Abstract:The diversity of SLAM benchmarks affords extensive testing of SLAM algorithms to understand their performance, individually or in relative terms. The ad-hoc creation of these benchmarks does not necessarily illuminate the particular weak points of a SLAM algorithm when performance is evaluated. In this paper, we propose to use a decision tree to identify challenging benchmark properties for state-of-the-art SLAM algorithms and important components within the SLAM pipeline regarding their ability to handle these challenges. Establishing what factors of a particular sequence lead to track failure or degradation relative to these characteristics is important if we are to arrive at a strong understanding for the core computational needs of a robust SLAM algorithm. Likewise, we argue that it is important to profile the computational performance of the individual SLAM components for use when benchmarking. In particular, we advocate the use of time-dilation during ROS bag playback, or what we refer to as slo-mo playback. Using slo-mo to benchmark SLAM instantiations can provide clues to how SLAM implementations should be improved at the computational component level. Three prevalent VO/SLAM algorithms and two low-latency algorithms of our own are tested on selected typical sequences, which are generated from benchmark characterization, to further demonstrate the benefits achieved from computationally efficient components.
Abstract:A local map module is often implemented in modern VO/VSLAM systems to improve data association and pose estimation. Conventionally, the local map contents are determined by co-visibility. While co-visibility is cheap to establish, it utilizes the relatively-weak temporal prior (i.e. seen before, likely to be seen now), therefore admitting more features into the local map than necessary. This paper describes an enhancement to co-visibility local map building by incorporating a strong appearance prior, which leads to a more compact local map and latency reduction in downstream data association. The appearance prior collected from the current image influences the local map contents: only the map features visually similar to the current measurements are potentially useful for data association. To that end, mapped features are indexed and queried with Multi-index Hashing (MIH). An online hash table selection algorithm is developed to further reduce the query overhead of MIH and the local map size. The proposed appearance-based local map building method is integrated into a state-of-the-art VO/VSLAM system. When evaluated on two public benchmarks, the size of the local map, as well as the latency of real-time pose tracking in VO/VSLAM are significantly reduced. Meanwhile, the VO/VSLAM mean performance is preserved or improves.