Abstract:Numerical reasoning over table-and-text hybrid passages, such as financial reports, poses significant challenges and has numerous potential applications. Noise and irrelevant variables in the model input have been a hindrance to its performance. Additionally, coarse-grained supervision of the whole solution program has impeded the model's ability to learn the underlying numerical reasoning process. In this paper, we propose three pretraining tasks that operate at both the whole program and sub-program level: Variable Integrity Ranking, which guides the model to focus on useful variables; Variable Operator Prediction, which decomposes the supervision into fine-grained single operator prediction; and Variable Keyphrase Masking, which encourages the model to identify key evidence that sub-programs are derived from. Experimental results demonstrate the effectiveness of our proposed methods, surpassing transformer-based model baselines.