Abstract:The Internet of Things (IoT) revolution has shown potential to give rise to many medical applications with access to large volumes of healthcare data collected by IoT devices. However, the increasing demand for healthcare data privacy and security makes each IoT device an isolated island of data. Further, the limited computation and communication capacity of wearable healthcare devices restrict the application of vanilla federated learning. To this end, we propose an advanced federated learning framework to train deep neural networks, where the network is partitioned and allocated to IoT devices and a centralized server. Then most of the training computation is handled by the powerful server. The sparsification of activations and gradients significantly reduces the communication overhead. Empirical study have suggested that the proposed framework guarantees a low accuracy loss, while only requiring 0.2% of the synchronization traffic in vanilla federated learning.
Abstract:We train an enhanced deep convolutional neural network in order to identify eight cardiac abnormalities from the standard 12-lead electrocardiograms (ECGs) using the dataset of 14000 ECGs. Instead of straightforwardly applying an end-to-end deep learning approach, we find that deep convolutional neural networks enhanced with sophisticated hand crafted features show advantages in reducing generalization errors. Additionally, data preprocessing and augmentation are essential since the distribution of eight cardiac abnormalities are highly biased in the given dataset. Our approach achieves promising generalization performance in the First China ECG Intelligent Competition; an empirical evaluation is also provided to validate the efficacy of our design on the competition ECG dataset.