Abstract:Convolutional Neural Networks (CNNs) have exhibited great performance in discriminative feature learning for complex visual tasks. Besides discrimination power, interpretability is another important yet under-explored property for CNNs. One difficulty in the CNN interpretability is that filters and image classes are entangled. In this paper, we introduce a novel pathway to alleviate the entanglement between filters and image classes. The proposed pathway groups the filters in a late conv-layer of CNN into class-specific clusters. Clusters and classes are in a one-to-one relationship. Specifically, we use the Bernoulli sampling to generate the filter-cluster assignment matrix from a learnable filter-class correspondence matrix. To enable end-to-end optimization, we develop a novel reparameterization trick for handling the non-differentiable Bernoulli sampling. We evaluate the effectiveness of our method on ten widely used network architectures (including nine CNNs and a ViT) and five benchmark datasets. Experimental results have demonstrated that our method PICNN (the combination of standard CNNs with our proposed pathway) exhibits greater interpretability than standard CNNs while achieving higher or comparable discrimination power.
Abstract:Recently, deep clustering methods have gained momentum because of the high representational power of deep neural networks (DNNs) such as autoencoder. The key idea is that representation learning and clustering can reinforce each other: Good representations lead to good clustering while good clustering provides good supervisory signals to representation learning. Critical questions include: 1) How to optimize representation learning and clustering? 2) Should the reconstruction loss of autoencoder be considered always? In this paper, we propose DEKM (for Deep Embedded K-Means) to answer these two questions. Since the embedding space generated by autoencoder may have no obvious cluster structures, we propose to further transform the embedding space to a new space that reveals the cluster-structure information. This is achieved by an orthonormal transformation matrix, which contains the eigenvectors of the within-class scatter matrix of K-means. The eigenvalues indicate the importance of the eigenvectors' contributions to the cluster-structure information in the new space. Our goal is to increase the cluster-structure information. To this end, we discard the decoder and propose a greedy method to optimize the representation. Representation learning and clustering are alternately optimized by DEKM. Experimental results on the real-world datasets demonstrate that DEKM achieves state-of-the-art performance.