Abstract:As millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems continue to incorporate larger antenna arrays, the range of near-field propagation expands, making it more likely for users close to the transmitter to fall within the near-field regime. Traditional far-field beam training methods are no longer effective in this context. Additionally, near-field beam training presents challenges, since the training codebook must account for both angular and distance dimensions, leading to large codebook sizes. To reduce the in-band training overhead, we propose the Sub-6G Channel-Aided Near-field BEam SelecTion (SCAN-BEST) framework, which is motivated by the spatial-temporal congruence between sub-6 GHz (sub-6G) and mmWave channels. SCAN-BEST utilizes preprocessed sub-6G channel estimates as input, and employs a convolutional neural network (CNN) to predict the probability of each beam being optimal within the near-field beam training codebook. Given the prediction uncertainty arising from the variance between sub-6G and mmWave channels, we introduce a conformal risk control (CRC)-based module that generates a set of beam candidates for further limited in-band training, enabling the final beam selection to formally meet user-defined target coverage rate. Numerical results confirm the thereoretical properties of SCAN-BEST in terms of the achieved coverage rate of the beam candidates and various metrics. Moreover, SCAN-BEST enjoys good scalability and robustness to various sub-6G system configurations, including to the sizes of calibration datasets.
Abstract:Hybrid beamforming is vital in modern wireless systems, especially for massive MIMO and millimeter-wave deployments, offering efficient directional transmission with reduced hardware complexity. However, effective beamforming in multi-user scenarios relies heavily on accurate channel state information, the acquisition of which often incurs excessive pilot overhead, degrading system performance. To address this and inspired by the spatial congruence between sub-6GHz (sub-6G) and mmWave channels, we propose a Sub-6G information Aided Multi-User Hybrid Beamforming (SA-MUHBF) framework, avoiding excessive use of pilots. SA-MUHBF employs a convolutional neural network to predict mmWave beamspace from sub-6G channel estimate, followed by a novel multi-layer graph neural network for analog beam selection and a linear minimum mean-square error algorithm for digital beamforming. Numerical results demonstrate that SA-MUHBF efficiently predicts the mmWave beamspace representation and achieves superior spectrum efficiency over state-of-the-art benchmarks. Moreover, SA-MUHBF demonstrates robust performance across varied sub-6G system configurations and exhibits strong generalization to unseen scenarios.