Abstract:Domain shift is a commonly encountered issue in medical imaging solutions, primarily caused by variations in imaging devices and data sources. To mitigate this problem, unsupervised domain adaptation techniques have been employed. However, concerns regarding patient privacy and potential degradation of image quality have led to an increased focus on source-free domain adaptation. In this study, we address the issue of false labels in self-training based source-free domain adaptive medical image segmentation methods. To correct erroneous pseudo-labels, we propose a novel approach called the local-global pseudo-label correction (LGDA) method for source-free domain adaptive medical image segmentation. Our method consists of two components: An offline local context-based pseudo-label correction method that utilizes local context similarity in image space. And an online global pseudo-label correction method based on class prototypes, which corrects erroneously predicted pseudo-labels by considering the relative distance between pixel-wise feature vectors and prototype vectors. We evaluate the performance of our method on three benchmark fundus image datasets for optic disc and cup segmentation. Our method achieves superior performance compared to the state-of-the-art approaches, even without using of any source data.
Abstract:Text style transfer is a challenging text generation problem, which aims at altering the style of a given sentence to a target one while keeping its content unchanged. Since there is a natural scarcity of parallel datasets, recent works mainly focus on solving the problem in an unsupervised manner. However, previous gradient-based works generally suffer from the deficiencies as follows, namely: (1) Content migration. Previous approaches lack explicit modeling of content invariance and are thus susceptible to content shift between the original sentence and the transferred one. (2) Style misclassification. A natural drawback of the gradient-guided approaches is that the inference process is homogeneous with a line of adversarial attack, making latent optimization easily becomes an attack to the classifier due to misclassification. This leads to difficulties in achieving high transfer accuracy. To address the problems, we propose a novel gradient-guided model through a contrastive paradigm for text style transfer, to explicitly gather similar semantic sentences, and to design a siamese-structure based style classifier for alleviating such two issues, respectively. Experiments on two datasets show the effectiveness of our proposed approach, as compared to the state-of-the-arts.