Abstract:Wireless communication highly depends on the cellular ground base station (GBS). A failure of the cellular GBS, fully or partially, during natural or man-made disasters creates a communication gap in the disaster-affected areas. In such situations, public safety communication (PSC) can significantly save the national infrastructure, property, and lives. Throughout emergencies, the PSC can provide mission-critical communication and video transmission services in the affected area. Unmanned aerial vehicles (UAVs) as flying base stations (UAV-BSs) are particularly suitable for PSC services as they are flexible, mobile, and easily deployable. This manuscript considers a multi-UAV-assisted PSC network with an observational UAV receiving videos from the affected area's ground users (AGUs) and transmitting them to the nearby GBS via a relay UAV. The objective of the proposed study is to maximize the average utility of the video streams generated by the AGUs upon reaching the GBS. This is achieved by optimizing the positions of the observational and relay UAVs, as well as the distribution of communication resources, such as bandwidth, and transmit power, while satisfying the system-designed constraints, such as transmission rate, rate outage probability, transmit power budget, and available bandwidth. To this end, a joint UAVs placement and resource allocation problem is mathematically formulated. The proposed problem poses a significant challenge for a solution. Considering the block coordinate descent and successive convex approximation techniques, an efficient iterative algorithm is proposed. Finally, simulation results are provided which show that our proposed approach outperforms the existing methods.
Abstract:Reconfigurable intelligent surface (RIS) has recently gained significant interest as an emerging technology for future wireless networks thanks to its potential for improving the coverage probability in challenging propagation environments. This paper studies an RIS-assisted propagation environment, where a source transmits data to a destination in the presence of a weak direct link. We analyze and compare RIS designs based on long-term and short-term channel statistics in terms of coverage probability and ergodic rate. For the considered optimization designs, we derive closed-form expressions for the coverage probability and ergodic rate, which explicitly unveil the impact of both the propagation environment and the RIS on the system performance. Besides the optimization of the RIS phase profile, we formulate an RIS placement optimization problem with the aim of maximizing the coverage probability by relying only on partial channel state information. An efficient algorithm is proposed based on the gradient ascent method. Simulation results are illustrated in order to corroborate the analytical framework and findings. The proposed RIS phase profile is shown to outperform several heuristic benchmarks in terms of outage probability and ergodic rate. In addition, the proposed RIS placement strategy provides an extra degree of freedom that remarkably improves system performance.