Abstract:We introduce a generalizable approach that combines perturbation method and one-shot transfer learning to solve nonlinear ODEs with a single polynomial term, using Physics-Informed Neural Networks (PINNs). Our method transforms non-linear ODEs into linear ODE systems, trains a PINN across varied conditions, and offers a closed-form solution for new instances within the same non-linear ODE class. We demonstrate the effectiveness of this approach on the Duffing equation and suggest its applicability to similarly structured PDEs and ODE systems.
Abstract:We propose an efficient numerical method for computing natural gradient descent directions with respect to a generic metric in the state space. Our technique relies on representing the natural gradient direction as a solution to a standard least-squares problem. Hence, instead of calculating, storing, or inverting the information matrix directly, we apply efficient methods from numerical linear algebra to solve this least-squares problem. We treat both scenarios where the derivative of the state variable with respect to the parameter is either explicitly known or implicitly given through constraints. We apply the QR decomposition to solve the least-squares problem in the former case and utilize the adjoint-state method to compute the natural gradient descent direction in the latter case. As a result, we can reliably compute several natural gradient descents, including the Wasserstein natural gradient, for a large-scale parameter space with thousands of dimensions, which was believed to be out of reach. Finally, our numerical results shed light on the qualitative differences among the standard gradient descent method and various natural gradient descent methods based on different metric spaces in large-scale nonconvex optimization problems.