Abstract:We propose a novel framework for solving a class of Partial Integro-Differential Equations (PIDEs) and Forward-Backward Stochastic Differential Equations with Jumps (FBSDEJs) through a deep learning-based approach. This method, termed the Forward-Backward Stochastic Jump Neural Network (FBSJNN), is both theoretically interpretable and numerically effective. Theoretical analysis establishes the convergence of the numerical scheme and provides error estimates grounded in the universal approximation properties of neural networks. In comparison to existing methods, the key innovation of the FBSJNN framework is that it uses a single neural network to approximate both the solution of the PIDEs and the non-local integral, leveraging Taylor expansion for the latter. This enables the method to reduce the total number of parameters in FBSJNN, which enhances optimization efficiency. Numerical experiments indicate that the FBSJNN scheme can obtain numerical solutions with a relative error on the scale of $10^{-3}$.
Abstract:We propose a deep learning algorithm for solving high-dimensional parabolic integro-differential equations (PIDEs) and high-dimensional forward-backward stochastic differential equations with jumps (FBSDEJs), where the jump-diffusion process are derived by a Brownian motion and an independent compensated Poisson random measure. In this novel algorithm, a pair of deep neural networks for the approximations of the gradient and the integral kernel is introduced in a crucial way based on deep FBSDE method. To derive the error estimates for this deep learning algorithm, the convergence of Markovian iteration, the error bound of Euler time discretization, and the simulation error of deep learning algorithm are investigated. Two numerical examples are provided to show the efficiency of this proposed algorithm.