Abstract:The increasing demand for wireless networks of higher capacity requires key-enabling technologies. Optical wireless communication (OWC) arises as a complementary technology to radio frequency (RF) systems that can support high aggregate data rates. However, OWC systems face some challenges including beam-blockage. Intelligent reflecting surfaces (IRSs) can offer alternative pathways for the optical signal, ensuring continuous connectivity. In this work, we investigate the potential of using IRS in an indoor OWC network. In particular, we define a system model of indoor OWC that employs IRS in conjunction with angle diversity transmitters (ADT) using vertical-cavity surface-emitting laser (VCSEL) arrays. The VCSEL beam is narrow, directed, and easy to block, however, it can deliver high data rates under eye safety regulations. Simulation results show that the deployment of IRS can significantly improve the achievable data rates of Laser-based OWC systems.
Abstract:Rising data demands are a growing concern globally. The task at hand is to evolve current communication networks to support enhanced data rates while maintaining low latency, energy consumption and costs. To meet the above challenge, Optical Wireless Communication (OWC) technology is proposed as a solution to complement traditional Radio Frequency (RF) based communication systems. Recently, Vertical Cavity Surface Emitting Lasers (VCSELS) have been considered for data transmission in OWC indoor environments due to their ability to transmit power through narrow, near-circular beams to receivers. In this paper, we study the energy efficiency of a VCSEL-based OWC system in an indoor environment and compare it to that of a Light Emitting Diode (LED) based system. The main findings show that the VCSEL system performs better and has higher energy efficiency.
Abstract:Optical wireless Communication (OWC) is a strong candidate in the next generation (6G) of cellular networks. In this paper, a laser-based optical wireless network is deployed in an indoor environment using Vertical Cavity Surface Emitting Lasers (VCSELS) as transmitters serving multiple users. Specifically, a commercially available low-cost VCSEL operating at 850nm wavelength is used. Considering the confined coverage area of each VCSEL, an array of VCSELs is designed to transmit data to multiple users through narrow beams taking into account eye safety regulations. To manage multi-user interference (MUI), Zero Forcing (ZF) is implemented to maximize the multiplexing gain of the network. The energy efficiency of the network is studied under different laser beam waists to find the effective laser beam size that results in throughput enhancement. The results show that the energy efficiency increases with the laser beam waist. Moreover, using micro lenses placed in front of the VCSELs leads to significant increase in the energy efficiency.