Abstract:Performance testing aims at uncovering efficiency issues of software systems. In order to be both effective and practical, the design of a performance test must achieve a reasonable trade-off between result quality and testing time. This becomes particularly challenging in Java context, where the software undergoes a warm-up phase of execution, due to just-in-time compilation. During this phase, performance measurements are subject to severe fluctuations, which may adversely affect quality of performance test results. However, these approaches often provide suboptimal estimates of the warm-up phase, resulting in either insufficient or excessive warm-up iterations, which may degrade result quality or increase testing time. There is still a lack of consensus on how to properly address this problem. Here, we propose and study an AI-based framework to dynamically halt warm-up iterations at runtime. Specifically, our framework leverages recent advances in AI for Time Series Classification (TSC) to predict the end of the warm-up phase during test execution. We conduct experiments by training three different TSC models on half a million of measurement segments obtained from JMH microbenchmark executions. We find that our framework significantly improves the accuracy of the warm-up estimates provided by state-of-practice and state-of-the-art methods. This higher estimation accuracy results in a net improvement in either result quality or testing time for up to +35.3% of the microbenchmarks. Our study highlights that integrating AI to dynamically estimate the end of the warm-up phase can enhance the cost-effectiveness of Java performance testing.
Abstract:Performance debugging in production is a fundamental activity in modern service-based systems. The diagnosis of performance issues is often time-consuming, since it requires thorough inspection of large volumes of traces and performance indices. In this paper we present DeLag, a novel automated search-based approach for diagnosing performance issues in service-based systems. DeLag identifies subsets of requests that show, in the combination of their Remote Procedure Call execution times, symptoms of potentially relevant performance issues. We call such symptoms Latency Degradation Patterns. DeLag simultaneously search for multiple latency degradation patterns while optimizing precision, recall and latency dissimilarity. Experimentation on 700 datasets of requests generated from two microservice-based systems shows that our approach provide better and more stable effectiveness than three state-of-the-art approaches and general purpose machine learning clustering algorithms. Moreover, DeLag outperforms in terms of efficiency the second and the third most effective baseline techniques on the largest datasets used in our evaluation.