Abstract:Auditory foundation models, including auditory large language models (LLMs), process all sound inputs equally, independent of listener perception. However, human auditory perception is inherently selective: listeners focus on specific speakers while ignoring others in complex auditory scenes. Existing models do not incorporate this selectivity, limiting their ability to generate perception-aligned responses. To address this, we introduce Intention-Informed Auditory Scene Understanding (II-ASU) and present Auditory Attention-Driven LLM (AAD-LLM), a prototype system that integrates brain signals to infer listener attention. AAD-LLM extends an auditory LLM by incorporating intracranial electroencephalography (iEEG) recordings to decode which speaker a listener is attending to and refine responses accordingly. The model first predicts the attended speaker from neural activity, then conditions response generation on this inferred attentional state. We evaluate AAD-LLM on speaker description, speech transcription and extraction, and question answering in multitalker scenarios, with both objective and subjective ratings showing improved alignment with listener intention. By taking a first step toward intention-aware auditory AI, this work explores a new paradigm where listener perception informs machine listening, paving the way for future listener-centered auditory systems. Demo and code available: https://aad-llm.github.io.
Abstract:Auditory attention decoding (AAD) is a technique used to identify and amplify the talker that a listener is focused on in a noisy environment. This is done by comparing the listener's brainwaves to a representation of all the sound sources to find the closest match. The representation is typically the waveform or spectrogram of the sounds. The effectiveness of these representations for AAD is uncertain. In this study, we examined the use of self-supervised learned speech representation in improving the accuracy and speed of AAD. We recorded the brain activity of three subjects using invasive electrocorticography (ECoG) as they listened to two conversations and focused on one. We used WavLM to extract a latent representation of each talker and trained a spatiotemporal filter to map brain activity to intermediate representations of speech. During the evaluation, the reconstructed representation is compared to each speaker's representation to determine the target speaker. Our results indicate that speech representation from WavLM provides better decoding accuracy and speed than the speech envelope and spectrogram. Our findings demonstrate the advantages of self-supervised learned speech representation for auditory attention decoding and pave the way for developing brain-controlled hearable technologies.