Abstract:In this paper we explore the performance of deep hidden physics model (M. Raissi 2018) for autonomous systems. These systems are described by set of ordinary differential equations which do not explicitly depend on time. Such systems can be found in nature and have applications in modeling chemical concentrations, population dynamics, n-body problems in physics etc. In this work we consider dynamics of states, which explain how the states will evolve are unknown to us. We approximate state and dynamics both using neural networks. We have considered examples of 2D linear/nonlinear and Lorenz systems. We observe that even without knowing all the states information, we can estimate dynamics of certain states whose state information are known.
Abstract:Modelling of systems where the full system information is unknown is an oft encountered problem for various engineering and industrial applications, as it's either impossible to consider all the complex physics involved or simpler models are considered to keep within the limits of the available resources. Recent advances in greybox modelling like the deep hidden physics models address this space by combining data and physics. However, for most real-life applications, model generalizability is a key issue, as retraining a model for every small change in system inputs and parameters or modification in domain configuration can render the model economically unviable. In this work we present a novel enhancement to the idea of hidden physics models which can generalize for changes in system inputs, parameters and domains. We also show that this approach holds promise in system discovery as well and helps learn the hidden physics for the changed system inputs, parameters and domain configuration.
Abstract:In this work, we present the physics-informed neural network (PINN) model applied particularly to dynamic problems in solid mechanics. We focus on forward and inverse problems. Particularly, we show how a PINN model can be used efficiently for material identification in a dynamic setting. In this work, we assume linear continuum elasticity. We show results for two-dimensional (2D) plane strain problem and then we proceed to apply the same techniques for a three-dimensional (3D) problem. As for the training data we use the solution based on the finite element method. We rigorously show that PINN models are accurate, robust and computationally efficient, especially as a surrogate model for material identification problems. Also, we employ state-of-the-art techniques from the PINN literature which are an improvement to the vanilla implementation of PINN. Based on our results, we believe that the framework we have developed can be readily adapted to computational platforms for solving multiple dynamic problems in solid mechanics.