Abstract:A poster from a long input document can be considered as a one-page easy-to-read multimodal (text and images) summary presented on a nice template with good design elements. Automatic transformation of a long document into a poster is a very less studied but challenging task. It involves content summarization of the input document followed by template generation and harmonization. In this work, we propose a novel deep submodular function which can be trained on ground truth summaries to extract multimodal content from the document and explicitly ensures good coverage, diversity and alignment of text and images. Then, we use an LLM based paraphraser and propose to generate a template with various design aspects conditioned on the input content. We show the merits of our approach through extensive automated and human evaluations.
Abstract:Conventionally, evaluation for the diagnosis of Autism spectrum disorder is done by a trained specialist through questionnaire-based formal assessments and by observation of behavioral cues under various settings to capture the early warning signs of autism. These evaluation techniques are highly subjective and their accuracy relies on the experience of the specialist. In this regard, machine learning-based methods for automated capturing of early signs of autism from the recorded videos of the children is a promising alternative. In this paper, the authors propose a novel pipelined deep learning architecture to detect certain self-stimulatory behaviors that help in the diagnosis of autism spectrum disorder (ASD). The authors also supplement their tool with an augmented version of the Self Stimulatory Behavior Dataset (SSBD) and also propose a new label in SSBD Action detection: no-class. The deep learning model with the new dataset is made freely available for easy adoption to the researchers and developers community. An overall accuracy of around 81% was achieved from the proposed pipeline model that is targeted for real-time and hands-free automated diagnosis. All of the source code, data, licenses of use, and other relevant material is made freely available in https://github.com/sarl-iiitb/