Abstract:We propose a novel, brain-inspired deep neural network model known as the Deep Oscillatory Neural Network (DONN). Deep neural networks like the Recurrent Neural Networks indeed possess sequence processing capabilities but the internal states of the network are not designed to exhibit brain-like oscillatory activity. With this motivation, the DONN is designed to have oscillatory internal dynamics. Neurons of the DONN are either nonlinear neural oscillators or traditional neurons with sigmoidal or ReLU activation. The neural oscillator used in the model is the Hopf oscillator, with the dynamics described in the complex domain. Input can be presented to the neural oscillator in three possible modes. The sigmoid and ReLU neurons also use complex-valued extensions. All the weight stages are also complex-valued. Training follows the general principle of weight change by minimizing the output error and therefore has an overall resemblance to complex backpropagation. A generalization of DONN to convolutional networks known as the Oscillatory Convolutional Neural Network is also proposed. The two proposed oscillatory networks are applied to a variety of benchmark problems in signal and image/video processing. The performance of the proposed models is either comparable or superior to published results on the same data sets.
Abstract:With the surging inclination towards carrying out tasks on computational devices and digital mediums, any method that converts a task that was previously carried out manually, to a digitized version, is always welcome. Irrespective of the various documentation tasks that can be done online today, there are still many applications and domains where handwritten text is inevitable, which makes the digitization of handwritten documents a very essential task. Over the past decades, there has been extensive research on offline handwritten text recognition. In the recent past, most of these attempts have shifted to Machine learning and Deep learning based approaches. In order to design more complex and deeper networks, and ensure stellar performances, it is essential to have larger quantities of annotated data. Most of the databases present for offline handwritten text recognition today, have either been manually annotated or semi automatically annotated with a lot of manual involvement. These processes are very time consuming and prone to human errors. To tackle this problem, we present an innovative, complete end-to-end pipeline, that annotates offline handwritten manuscripts written in both print and cursive English, using Deep Learning and User Interaction techniques. This novel method, which involves an architectural combination of a detection system built upon a state-of-the-art text detection model, and a custom made Deep Learning model for the recognition system, is combined with an easy-to-use interactive interface, aiming to improve the accuracy of the detection, segmentation, serialization and recognition phases, in order to ensure high quality annotated data with minimal human interaction.