Abstract:The maritime industry aims towards a sustainable future, which requires significant improvements in operational efficiency. Current approaches focus on minimising fuel consumption and emissions through greater autonomy. Efficient and safe autonomous navigation requires high-fidelity ship motion models applicable to real-world conditions. Although physics-based ship motion models can predict ships' motion with sub-second resolution, their validation in real-world conditions is rarely found in the literature. This study presents a physics-based 3D dynamics motion model that is tailored to a container-ship, and compares its predictions against real-world voyages. The model integrates vessel motion over time and accounts for its hydrodynamic behavior under different environmental conditions. The model's predictions are evaluated against real vessel data both visually and using multiple distance measures. Both methodologies demonstrate that the model's predictions align closely with the real-world trajectories of the container-ship.