Abstract:Recognizing non-standard entity types and relations, such as B2B products, product classes and their producers, in news and forum texts is important in application areas such as supply chain monitoring and market research. However, there is a decided lack of annotated corpora and annotation guidelines in this domain. In this work, we present a corpus study, an annotation schema and associated guidelines, for the annotation of product entity and company-product relation mentions. We find that although product mentions are often realized as noun phrases, defining their exact extent is difficult due to high boundary ambiguity and the broad syntactic and semantic variety of their surface realizations. We also describe our ongoing annotation effort, and present a preliminary corpus of English web and social media documents annotated according to the proposed guidelines.
Abstract:Monitoring mobility- and industry-relevant events is important in areas such as personal travel planning and supply chain management, but extracting events pertaining to specific companies, transit routes and locations from heterogeneous, high-volume text streams remains a significant challenge. This work describes a corpus of German-language documents which has been annotated with fine-grained geo-entities, such as streets, stops and routes, as well as standard named entity types. It has also been annotated with a set of 15 traffic- and industry-related n-ary relations and events, such as accidents, traffic jams, acquisitions, and strikes. The corpus consists of newswire texts, Twitter messages, and traffic reports from radio stations, police and railway companies. It allows for training and evaluating both named entity recognition algorithms that aim for fine-grained typing of geo-entities, as well as n-ary relation extraction systems.