Abstract:Although the traits emerged in a mass gathering are often non-deliberative, the act of mass impulse may lead to irre- vocable crowd disasters. The two-fold increase of carnage in crowd since the past two decades has spurred significant advances in the field of computer vision, towards effective and proactive crowd surveillance. Computer vision stud- ies related to crowd are observed to resonate with the understanding of the emergent behavior in physics (complex systems) and biology (animal swarm). These studies, which are inspired by biology and physics, share surprisingly common insights, and interesting contradictions. However, this aspect of discussion has not been fully explored. Therefore, this survey provides the readers with a review of the state-of-the-art methods in crowd behavior analysis from the physics and biologically inspired perspectives. We provide insights and comprehensive discussions for a broader understanding of the underlying prospect of blending physics and biology studies in computer vision.
Abstract:It is common for CCTV operators to overlook inter- esting events taking place within the crowd due to large number of people in the crowded scene (i.e. marathon, rally). Thus, there is a dire need to automate the detection of salient crowd regions acquiring immediate attention for a more effective and proactive surveillance. This paper proposes a novel framework to identify and localize salient regions in a crowd scene, by transforming low-level features extracted from crowd motion field into a global similarity structure. The global similarity structure representation allows the discovery of the intrinsic manifold of the motion dynamics, which could not be captured by the low-level representation. Ranking is then performed on the global similarity structure to identify a set of extrema. The proposed approach is unsupervised so learning stage is eliminated. Experimental results on public datasets demonstrates the effectiveness of exploiting such extrema in identifying salient regions in various crowd scenarios that exhibit crowding, local irregular motion, and unique motion areas such as sources and sinks.