Abstract:With the continuous increase of internet usage in todays time, everyone is influenced by this source of the power of technology. Due to this, the rise of applications and games Is unstoppable. A major percentage of our population uses these applications for multiple purposes. These range from education, communication, news, entertainment, and many more. Out of this, the application that is making sure that the world stays in touch with each other and with current affairs is social media. Social media applications have seen a boom in the last 10 years with the introduction of smartphones and the internet being available at affordable prices. Applications like Twitch and Youtube are some of the best platforms for producing content and expressing their talent as well. It is the goal of every content creator to post the best and most reliable content so that they can gain recognition. It is important to know the methods of achieving popularity easily, which is what this paper proposes to bring to the spotlight. There should be certain parameters based on which the reach of content could be multiplied by a good factor. The proposed research work aims to identify and estimate the reach, popularity, and views of a YouTube video by using certain features using machine learning and AI techniques. A ranking system would also be used keeping the trending videos in consideration. This would eventually help the content creator know how authentic their content is and healthy competition to make better content before uploading the video on the platform will be ensured.
Abstract:Text classification helps analyse texts for semantic meaning and relevance, by mapping the words against this hierarchy. An analysis of various types of texts is invaluable to understanding both their semantic meaning, as well as their relevance. Text classification is a method of categorising documents. It combines computer text classification and natural language processing to analyse text in aggregate. This method provides a descriptive categorization of the text, with features like content type, object field, lexical characteristics, and style traits. In this research, the authors aim to use natural language feature extraction methods in machine learning which are then used to train some of the basic machine learning models like Naive Bayes, Logistic Regression, and Support Vector Machine. These models are used to detect when a teacher must get involved in a discussion when the lines go off-topic.