Abstract:Remote Sensing Images from satellites have been used in various domains for detecting and understanding structures on the ground surface. In this work, satellite images were used for localizing parking spaces and vehicles in parking lots for a given parcel using an RCNN based Neural Network Architectures. Parcel shapefiles and raster images from USGS image archive were used for developing images for both training and testing. Feature Pyramid based Mask RCNN yields average class accuracy of 97.56% for both parking spaces and vehicles
Abstract:MAC Net is a compositional attention network designed for Visual Question Answering. We propose a modified MAC net architecture for Natural Language Question Answering. Question Answering typically requires Language Understanding and multi-step Reasoning. MAC net's unique architecture - the separation between memory and control, facilitates data-driven iterative reasoning. This makes it an ideal candidate for solving tasks that involve logical reasoning. Our experiments with 20 bAbI tasks demonstrate the value of MAC net as a data-efficient and interpretable architecture for Natural Language Question Answering. The transparent nature of MAC net provides a highly granular view of the reasoning steps taken by the network in answering a query.