Abstract:An ordinal classification problem is one in which the target variable takes values on an ordinal scale. Nowadays, there are many of these problems associated with real-world tasks where it is crucial to accurately classify the extreme classes of the ordinal structure. In this work, we propose a unimodal regularisation approach that can be applied to any loss function to improve the classification performance of the first and last classes while maintaining good performance for the remainder. The proposed methodology is tested on six datasets with different numbers of classes, and compared with other unimodal regularisation methods in the literature. In addition, performance in the extreme classes is compared using a new metric that takes into account their sensitivities. Experimental results and statistical analysis show that the proposed methodology obtains a superior average performance considering different metrics. The results for the proposed metric show that the generalised beta distribution generally improves classification performance in the extreme classes. At the same time, the other five nominal and ordinal metrics considered show that the overall performance is aligned with the performance of previous alternatives.
Abstract:Predictive Maintenance (PdM) methods aim to facilitate the scheduling of maintenance work before equipment failure. In this context, detecting early faults in automated teller machines (ATMs) has become increasingly important since these machines are susceptible to various types of unpredictable failures. ATMs track execution status by generating massive event-log data that collect system messages unrelated to the failure event. Predicting machine failure based on event logs poses additional challenges, mainly in extracting features that might represent sequences of events indicating impending failures. Accordingly, feature learning approaches are currently being used in PdM, where informative features are learned automatically from minimally processed sensor data. However, a gap remains to be seen on how these approaches can be exploited for deriving relevant features from event-log-based data. To fill this gap, we present a predictive model based on a convolutional kernel (MiniROCKET and HYDRA) to extract features from the original event-log data and a linear classifier to classify the sample based on the learned features. The proposed methodology is applied to a significant real-world collected dataset. Experimental results demonstrated how one of the proposed convolutional kernels (i.e. HYDRA) exhibited the best classification performance (accuracy of 0.759 and AUC of 0.693). In addition, statistical analysis revealed that the HYDRA and MiniROCKET models significantly overcome one of the established state-of-the-art approaches in time series classification (InceptionTime), and three non-temporal ML methods from the literature. The predictive model was integrated into a container-based decision support system to support operators in the timely maintenance of ATMs.