Abstract:Dream11 takes pride in being a unique platform that enables over 190 million fantasy sports users to demonstrate their skills and connect deeper with their favorite sports. While managing such a scale, one issue we are faced with is duplicate/multiple account creation in the system. This is done by some users with the intent of abusing the platform, typically for bonus offers. The challenge is to detect these multiple accounts before it is too late. We propose a graph-based solution to solve this problem in which we first predict edges/associations between users. Using the edge information we highlight clusters of colluding multiple accounts. In this paper, we talk about our distributed ML system which is deployed to serve and support the inferences from our detection models. The challenge is to do this in real-time in order to take corrective actions. A core part of this setup also involves human-in-the-loop components for validation, feedback, and ground-truth labeling.
Abstract:User churn, characterized by customers ending their relationship with a business, has profound economic consequences across various Business-to-Customer scenarios. For numerous system-to-user actions, such as promotional discounts and retention campaigns, predicting potential churners stands as a primary objective. In volatile sectors like fantasy sports, unpredictable factors such as international sports events can influence even regular spending habits. Consequently, while transaction history and user-product interaction are valuable in predicting churn, they demand deep domain knowledge and intricate feature engineering. Additionally, feature development for churn prediction systems can be resource-intensive, particularly in production settings serving 200m+ users, where inference pipelines largely focus on feature engineering. This paper conducts an exhaustive study on predicting user churn using historical data. We aim to create a model forecasting customer churn likelihood, facilitating businesses in comprehending attrition trends and formulating effective retention plans. Our approach treats churn prediction as multivariate time series classification, demonstrating that combining user activity and deep neural networks yields remarkable results for churn prediction in complex business-to-customer contexts.