Abstract:Fantasy sports, particularly fantasy cricket, have garnered immense popularity in India in recent years, offering enthusiasts the opportunity to engage in strategic team-building and compete based on the real-world performance of professional athletes. In this paper, we address the challenge of optimizing fantasy cricket team selection using reinforcement learning (RL) techniques. By framing the team creation process as a sequential decision-making problem, we aim to develop a model that can adaptively select players to maximize the team's potential performance. Our approach leverages historical player data to train RL algorithms, which then predict future performance and optimize team composition. This not only represents a huge business opportunity by enabling more accurate predictions of high-performing teams but also enhances the overall user experience. Through empirical evaluation and comparison with traditional fantasy team drafting methods, we demonstrate the effectiveness of RL in constructing competitive fantasy teams. Our results show that RL-based strategies provide valuable insights into player selection in fantasy sports.
Abstract:User churn, characterized by customers ending their relationship with a business, has profound economic consequences across various Business-to-Customer scenarios. For numerous system-to-user actions, such as promotional discounts and retention campaigns, predicting potential churners stands as a primary objective. In volatile sectors like fantasy sports, unpredictable factors such as international sports events can influence even regular spending habits. Consequently, while transaction history and user-product interaction are valuable in predicting churn, they demand deep domain knowledge and intricate feature engineering. Additionally, feature development for churn prediction systems can be resource-intensive, particularly in production settings serving 200m+ users, where inference pipelines largely focus on feature engineering. This paper conducts an exhaustive study on predicting user churn using historical data. We aim to create a model forecasting customer churn likelihood, facilitating businesses in comprehending attrition trends and formulating effective retention plans. Our approach treats churn prediction as multivariate time series classification, demonstrating that combining user activity and deep neural networks yields remarkable results for churn prediction in complex business-to-customer contexts.