Abstract:The Numerical Association Rule Mining paradigm that includes concurrent dealing with numerical and categorical attributes is beneficial for discovering associations from datasets consisting of both features. The process is not considered as easy since it incorporates several processing steps running sequentially that form an entire pipeline, e.g., preprocessing, algorithm selection, hyper-parameter optimization, and the definition of metrics evaluating the quality of the association rule. In this paper, we proposed a novel Automated Machine Learning method, NiaAutoARM, for constructing the full association rule mining pipelines based on stochastic population-based meta-heuristics automatically. Along with the theoretical representation of the proposed method, we also present a comprehensive experimental evaluation of the proposed method.
Abstract:To predict the final result of an athlete in a marathon run thoroughly is the eternal desire of each trainer. Usually, the achieved result is weaker than the predicted one due to the objective (e.g., environmental conditions) as well as subjective factors (e.g., athlete's malaise). Therefore, making up for the deficit between predicted and achieved results is the main ingredient of the analysis performed by trainers after the competition. In the analysis, they search for parts of a marathon course where the athlete lost time. This paper proposes an automatic making up for the deficit by using a Differential Evolution algorithm. In this case study, the results that were obtained by a wearable sports-watch by an athlete in a real marathon are analyzed. The first experiments with Differential Evolution show the possibility of using this method in the future.