Abstract:The problem of Raman amplifier optimization is studied. A differentiable interpolation function is obtained for the Raman gain coefficient using machine learning (ML), which allows for the gradient descent optimization of forward-propagating Raman pumps. Both the frequency and power of an arbitrary number of pumps in a forward pumping configuration are then optimized for an arbitrary data channel load and span length. The forward propagation model is combined with an experimentally-trained ML model of a backward-pumping Raman amplifier to jointly optimize the frequency and power of the forward amplifier's pumps and the powers of the backward amplifier's pumps. The joint forward and backward amplifier optimization is demonstrated for an unrepeatered transmission of 250 km. A gain flatness of $<$ 1~dB over 4 THz is achieved. The optimized amplifiers are validated using a numerical simulator.
Abstract:We experimentally compare simple physics-based vs. data-driven neural-network-based models for offline training of programmable photonic chips using Mach-Zehnder interferometer meshes. The neural-network model outperforms physics-based models for a chip with thermal crosstalk, yielding increased testing accuracy.
Abstract:Cascades of a machine learning-based EDFA gain model trained on a single physical device and a fully differentiable stimulated Raman scattering fiber model are used to predict and optimize the power profile at the output of an experimental multi-span fully-loaded C-band optical communication system.
Abstract:We report a neural-network based erbium-doped fiber amplifier (EDFA) gain model built from experimental measurements. The model shows low gain-prediction error for both the same device used for training (MSE $\leq$ 0.04 dB$^2$) and different physical units of the same make (generalization MSE $\leq$ 0.06 dB$^2$).