Abstract:Satellite images have become increasingly valuable for modelling regional climate change effects. Earth surface forecasting represents one such task that integrates satellite images with meteorological data to capture the joint evolution of regional climate change effects. However, understanding the complex relationship between specific meteorological variables and land surface evolution poses a significant challenge. In light of this challenge, our paper introduces a pipeline that integrates principles from both perturbation-based explainability techniques like LIME and global marginal explainability techniques like PDP, besides addressing the constraints of using such techniques when applying them to high-dimensional spatiotemporal deep models. The proposed pipeline simplifies the undertaking of diverse investigative analyses, such as marginal sensitivity analysis, marginal correlation analysis, lag analysis, etc., on complex land surface forecasting models In this study we utilised Convolutional Long Short-Term Memory (ConvLSTM) as the surface forecasting model and did analyses on the Normalized Difference Vegetation Index (NDVI) of the surface forecasts, since meteorological variables like temperature, pressure, and precipitation significantly influence it. The study area encompasses various regions in Europe. Our analyses show that precipitation exhibits the highest sensitivity in the study area, followed by temperature and pressure. Pressure has little to no direct effect on NDVI. Additionally, interesting nonlinear correlations between meteorological variables and NDVI have been uncovered.
Abstract:Small object detection in aerial imagery presents significant challenges in computer vision due to the minimal data inherent in small-sized objects and their propensity to be obscured by larger objects and background noise. Traditional methods using transformer-based models often face limitations stemming from the lack of specialized databases, which adversely affect their performance with objects of varying orientations and scales. This underscores the need for more adaptable, lightweight models. In response, this paper introduces two innovative approaches that significantly enhance detection and segmentation capabilities for small aerial objects. Firstly, we explore the use of the SAHI framework on the newly introduced lightweight YOLO v9 architecture, which utilizes Programmable Gradient Information (PGI) to reduce the substantial information loss typically encountered in sequential feature extraction processes. The paper employs the Vision Mamba model, which incorporates position embeddings to facilitate precise location-aware visual understanding, combined with a novel bidirectional State Space Model (SSM) for effective visual context modeling. This State Space Model adeptly harnesses the linear complexity of CNNs and the global receptive field of Transformers, making it particularly effective in remote sensing image classification. Our experimental results demonstrate substantial improvements in detection accuracy and processing efficiency, validating the applicability of these approaches for real-time small object detection across diverse aerial scenarios. This paper also discusses how these methodologies could serve as foundational models for future advancements in aerial object recognition technologies. The source code will be made accessible here.
Abstract:In recent advancements within the domain of Large Language Models (LLMs), there has been a notable emergence of agents capable of addressing Robotic Process Automation (RPA) challenges through enhanced cognitive capabilities and sophisticated reasoning. This development heralds a new era of scalability and human-like adaptability in goal attainment. In this context, we introduce AUTONODE (Autonomous User-interface Transformation through Online Neuro-graphic Operations and Deep Exploration). AUTONODE employs advanced neuro-graphical techniques to facilitate autonomous navigation and task execution on web interfaces, thereby obviating the necessity for predefined scripts or manual intervention. Our engine empowers agents to comprehend and implement complex workflows, adapting to dynamic web environments with unparalleled efficiency. Our methodology synergizes cognitive functionalities with robotic automation, endowing AUTONODE with the ability to learn from experience. We have integrated an exploratory module, DoRA (Discovery and mapping Operation for graph Retrieval Agent), which is instrumental in constructing a knowledge graph that the engine utilizes to optimize its actions and achieve objectives with minimal supervision. The versatility and efficacy of AUTONODE are demonstrated through a series of experiments, highlighting its proficiency in managing a diverse array of web-based tasks, ranging from data extraction to transaction processing.
Abstract:With the global population on the rise, our cities have been expanding to accommodate the growing number of people. The expansion of cities generally leads to the engulfment of peripheral areas. However, such expansion of urban areas is likely to cause increment in areas with increased land surface temperature (LST). By considering each summer as a data point, we form LST multi-year time-series and cluster it to obtain spatio-temporal pattern. We observe several interesting phenomena from these patterns, e.g., some clusters show reasonable similarity to the built-up area, whereas the locations with high temporal variation are seen more in the peripheral areas. Furthermore, the LST center of mass shifts over the years for cities with development activities tilted towards a direction. We conduct the above-mentioned studies for three different cities in three different continents.