Abstract:Sepsis is a syndrome that develops in response to the presence of infection. It is characterized by severe organ dysfunction and is one of the leading causes of mortality in Intensive Care Units (ICUs) worldwide. These complications can be reduced through early application of antibiotics, hence the ability to anticipate the onset of sepsis early is crucial to the survival and well-being of patients. Current machine learning algorithms deployed inside medical infrastructures have demonstrated poor performance and are insufficient for anticipating sepsis onset early. In recent years, deep learning methodologies have been proposed to predict sepsis, but some fail to capture the time of onset (e.g., classifying patients' entire visits as developing sepsis or not) and others are unrealistic to be deployed into medical facilities (e.g., creating training instances using a fixed time to onset where the time of onset needs to be known apriori). Therefore, in this paper, we first propose a novel but realistic prediction framework that predicts each morning whether sepsis onset will occur within the next 24 hours using data collected at night, when patient-provider ratios are higher due to cross-coverage resulting in limited observation to each patient. However, as we increase the prediction rate into daily, the number of negative instances will increase while that of positive ones remain the same. Thereafter, we have a severe class imbalance problem, making a machine learning model hard to capture rare sepsis cases. To address this problem, we propose to do nightly profile representation learning (NPRL) for each patient. We prove that NPRL can theoretically alleviate the rare event problem. Our empirical study using data from a level-1 trauma center further demonstrates the effectiveness of our proposal.
Abstract:Sepsis is a life-threatening organ malfunction caused by the host's inability to fight infection, which can lead to death without proper and immediate treatment. Therefore, early diagnosis and medical treatment of sepsis in critically ill populations at high risk for sepsis and sepsis-associated mortality are vital to providing the patient with rapid therapy. Studies show that advancing sepsis detection by 6 hours leads to earlier administration of antibiotics, which is associated with improved mortality. However, clinical scores like Sequential Organ Failure Assessment (SOFA) are not applicable for early prediction, while machine learning algorithms can help capture the progressing pattern for early prediction. Therefore, we aim to develop a machine learning algorithm that predicts sepsis onset 6 hours before it is suspected clinically. Although some machine learning algorithms have been applied to sepsis prediction, many of them did not consider the fact that six hours is not a small gap. To overcome this big gap challenge, we explore a multi-subset approach in which the likelihood of sepsis occurring earlier than 6 hours is output from a previous subset and feed to the target subset as additional features. Moreover, we use the hourly sampled data like vital signs in an observation window to derive a temporal change trend to further assist, which however is often ignored by previous studies. Our empirical study shows that both the multi-subset approach to alleviating the 6-hour gap and the added temporal trend features can help improve the performance of sepsis-related early prediction.