Abstract:Principal component regression (PCR) is a widely used two-stage procedure: principal component analysis (PCA), followed by regression in which the selected principal components are regarded as new explanatory variables in the model. Note that PCA is based only on the explanatory variables, so the principal components are not selected using the information on the response variable. In this paper, we propose a one-stage procedure for PCR in the framework of generalized linear models. The basic loss function is based on a combination of the regression loss and PCA loss. An estimate of the regression parameter is obtained as the minimizer of the basic loss function with a sparse penalty. We call the proposed method sparse principal component regression for generalized linear models (SPCR-glm). Taking the two loss function into consideration simultaneously, SPCR-glm enables us to obtain sparse principal component loadings that are related to a response variable. However, a combination of loss functions may cause a parameter identification problem, but this potential problem is avoided by virtue of the sparse penalty. Thus, the sparse penalty plays two roles in this method. The parameter estimation procedure is proposed using various update algorithms with the coordinate descent algorithm. We apply SPCR-glm to two real datasets, doctor visits data and mouse consomic strain data. SPCR-glm provides more easily interpretable principal component (PC) scores and clearer classification on PC plots than the usual PCA.
Abstract:Principal component regression (PCR) is a two-stage procedure that selects some principal components and then constructs a regression model regarding them as new explanatory variables. Note that the principal components are obtained from only explanatory variables and not considered with the response variable. To address this problem, we propose the sparse principal component regression (SPCR) that is a one-stage procedure for PCR. SPCR enables us to adaptively obtain sparse principal component loadings that are related to the response variable and select the number of principal components simultaneously. SPCR can be obtained by the convex optimization problem for each of parameters with the coordinate descent algorithm. Monte Carlo simulations and real data analyses are performed to illustrate the effectiveness of SPCR.