Abstract:The degree of polymerization (DP) is one of the methods for estimating the aging of the polymer based insulation systems, such as cellulose insulation in power components. The main degradation mechanisms in polymers are hydrolysis, pyrolysis, and oxidation. These mechanisms combined cause a reduction of the DP. However, the data availability for these types of problems is usually scarce. This study analyzes insulation aging using cellulose degradation data from power transformers. The aging problem for the cellulose immersed in mineral oil inside power transformers is modeled with ordinary differential equations (ODEs). We recover the governing equations of the degradation system using Physics-Informed Neural Networks (PINNs) and symbolic regression. We apply PINNs to discover the Arrhenius equation's unknown parameters in the Ekenstam ODE describing cellulose contamination content and the material aging process related to temperature for synthetic data and real DP values. A modification of the Ekenstam ODE is given by Emsley's system of ODEs, where the rate constant expressed by the Arrhenius equation decreases in time with the new formulation. We use PINNs and symbolic regression to recover the functional form of one of the ODEs of the system and to identify an unknown parameter.
Abstract:Power transformers are subjected to electrical currents and temperature fluctuations that, if not properly controlled, can lead to major deterioration of their insulation system. Therefore, monitoring the temperature of a power transformer is fundamental to ensure a long-term operational life. Models presented in the IEC 60076-7 and IEEE standards, for example, monitor the temperature by calculating the top-oil and the hot-spot temperatures. However, these models are not very accurate and rely on the power transformers' properties. This paper focuses on finding an alternative method to predict the top-oil temperatures given previous measurements. Given the large quantities of data available, machine learning methods for time series forecasting are analyzed and compared to the real measurements and the corresponding prediction of the IEC standard. The methods tested are Artificial Neural Networks (ANNs), Time-series Dense Encoder (TiDE), and Temporal Convolutional Networks (TCN) using different combinations of historical measurements. Each of these methods outperformed the IEC 60076-7 model and they are extended to estimate the temperature rise over ambient. To enhance prediction reliability, we explore the application of quantile regression to construct prediction intervals for the expected top-oil temperature ranges. The best-performing model successfully estimates conditional quantiles that provide sufficient coverage.