Abstract:Deep neural network (DNN)-based models for environmental sound classification are not robust against a domain to which training data do not belong, that is, out-of-distribution or unseen data. To utilize pretrained models for the unseen domain, adaptation methods, such as finetuning and transfer learning, are used with rich computing resources, e.g., the graphical processing unit (GPU). However, it is becoming more difficult to keep up with research trends for those who have poor computing resources because state-of-the-art models are becoming computationally resource-intensive. In this paper, we propose a trainingless adaptation method for pretrained models for environmental sound classification. To introduce the trainingless adaptation method, we first propose an operation of recovering time--frequency-ish (TF-ish) structures in intermediate layers of DNN models. We then propose the trainingless frequency filtering method for domain adaptation, which is not a gradient-based optimization widely used. The experiments conducted using the ESC-50 dataset show that the proposed adaptation method improves the classification accuracy by 20.40 percentage points compared with the conventional method.
Abstract:Optical fiber sensing is a technology wherein audio, vibrations, and temperature are detected using an optical fiber; especially the audio/vibrations-aware sensing is called distributed acoustic sensing (DAS). In DAS, observed data, which is comprised of multichannel data, has suffered from severe noise levels because of the optical noise or the installation methods. In conventional methods for denoising DAS data, signal-processing- or deep-neural-network (DNN)-based models have been studied. The signal-processing-based methods have the interpretability, i.e., non-black box. The DNN-based methods are good at flexibility designing network architectures and objective functions, that is, priors. However, there is no balance between the interpretability and the flexibility of priors in the DAS studies. The DNN-based methods also require a large amount of training data in general. To address the problems, we propose a DNN-structure signal-processing-based denoising method in this paper. As the priors of DAS, we employ spatial knowledge; low rank and channel-dependent sensitivity using the DNN-based structure. The result of fiber-acoustic sensing shows that the proposed method outperforms the conventional methods and the robustness to the number of the spatial ranks. Moreover, the optimized parameters of the proposed method indicate the relationship with the channel sensitivity; the interpretability.