Abstract:A master face is a face image that passes face-based identity authentication for a high percentage of the population. These faces can be used to impersonate, with a high probability of success, any user, without having access to any user information. We optimize these faces for 2D and 3D face verification models, by using an evolutionary algorithm in the latent embedding space of the StyleGAN face generator. For 2D face verification, multiple evolutionary strategies are compared, and we propose a novel approach that employs a neural network to direct the search toward promising samples, without adding fitness evaluations. The results we present demonstrate that it is possible to obtain a considerable coverage of the identities in the LFW or RFW datasets with less than 10 master faces, for six leading deep face recognition systems. In 3D, we generate faces using the 2D StyleGAN2 generator and predict a 3D structure using a deep 3D face reconstruction network. When employing two different 3D face recognition systems, we are able to obtain a coverage of 40%-50%. Additionally, we present the generation of paired 2D RGB and 3D master faces, which simultaneously match 2D and 3D models with high impersonation rates.
Abstract:Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them. Several variants of CCA have been introduced in the literature, in particular, variants based on deep neural networks for learning highly correlated nonlinear transformations of two views. As these models are parameterized conventionally, their learnable parameters remain independent of the inputs after the training process, which may limit their capacity for learning highly correlated representations. We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model. In our deep-CCA models, the parameters of the last layer are scaled by a second neural network that is conditioned on the model's input, resulting in a parameterization that is dependent on the input samples. We evaluate our model on multiple datasets and demonstrate that the learned representations are more correlated in comparison to the conventionally-parameterized CCA-based models and also obtain preferable retrieval results. Our code is available at https://github.com/tomerfr/DynamicallyScaledDeepCCA.
Abstract:A master face is a face image that passes face-based identity-authentication for a large portion of the population. These faces can be used to impersonate, with a high probability of success, any user, without having access to any user-information. We optimize these faces, by using an evolutionary algorithm in the latent embedding space of the StyleGAN face generator. Multiple evolutionary strategies are compared, and we propose a novel approach that employs a neural network in order to direct the search in the direction of promising samples, without adding fitness evaluations. The results we present demonstrate that it is possible to obtain a high coverage of the LFW identities (over 40%) with less than 10 master faces, for three leading deep face recognition systems.