Abstract:Mental health risk prediction is a growing field in the speech community, but many studies are based on small corpora. This study illustrates how variations in test and train set sizes impact performance in a controlled study. Using a corpus of over 65K labeled data points, results from a fully crossed design of different train/test size combinations are provided. Two model types are included: one based on language and the other on speech acoustics. Both use methods current in this domain. An age-mismatched test set was also included. Results show that (1) test sizes below 1K samples gave noisy results, even for larger training set sizes; (2) training set sizes of at least 2K were needed for stable results; (3) NLP and acoustic models behaved similarly with train/test size variations, and (4) the mismatched test set showed the same patterns as the matched test set. Additional factors are discussed, including label priors, model strength and pre-training, unique speakers, and data lengths. While no single study can specify exact size requirements, results demonstrate the need for appropriately sized train and test sets for future studies of mental health risk prediction from speech and language.
Abstract:Deep learning models are rapidly gaining interest for real-world applications in behavioral health. An important gap in current literature is how well such models generalize over different populations. We study Natural Language Processing (NLP) based models to explore portability over two different corpora highly mismatched in age. The first and larger corpus contains younger speakers. It is used to train an NLP model to predict depression. When testing on unseen speakers from the same age distribution, this model performs at AUC=0.82. We then test this model on the second corpus, which comprises seniors from a retirement community. Despite the large demographic differences in the two corpora, we saw only modest degradation in performance for the senior-corpus data, achieving AUC=0.76. Interestingly, in the senior population, we find AUC=0.81 for the subset of patients whose health state is consistent over time. Implications for demographic portability of speech-based applications are discussed.