Abstract:To perform a precise auscultation for the purposes of examination of respiratory system normally requires the presence of an experienced doctor. With most recent advances in machine learning and artificial intelligence, automatic detection of pathological breath phenomena in sounds recorded with stethoscope becomes a reality. But to perform a full auscultation in home environment by layman is another matter, especially if the patient is a child. In this paper we propose a unique application of Reinforcement Learning for training an agent that interactively guides the end user throughout the auscultation procedure. We show that \textit{intelligent} selection of auscultation points by the agent reduces time of the examination fourfold without significant decrease in diagnosis accuracy compared to exhaustive auscultation.
Abstract:When designing fully-convolutional neural network, there is a trade-off between receptive field size, number of parameters and spatial resolution of features in deeper layers of the network. In this work we present a novel network design based on combination of many convolutional and recurrent layers that solves these dilemmas. We compare our solution with U-nets based models known from the literature and other baseline models on speech enhancement task. We test our solution on TIMIT speech utterances combined with noise segments extracted from NOISEX-92 database and show clear advantage of proposed solution in terms of SDR (signal-to-distortion ratio), SIR (signal-to-interference ratio) and STOI (spectro-temporal objective intelligibility) metrics compared to the current state-of-the-art.