Abstract:Modern software systems are able to record vast amounts of user actions, stored for later analysis. One of the main types of such user interaction data is click data: the digital trace of the actions of a user through the graphical elements of an application, website or software. While readily available, click data is often missing a case notion: an attribute linking events from user interactions to a specific process instance in the software. In this paper, we propose a neural network-based technique to determine a case notion for click data, thus enabling process mining and other process analysis techniques on user interaction data. We describe our method, show its scalability to datasets of large dimensions, and we validate its efficacy through a user study based on the segmented event log resulting from interaction data of a mobility sharing company. Interviews with domain experts in the company demonstrate that the case notion obtained by our method can lead to actionable process insights.
Abstract:Among the many sources of event data available today, a prominent one is user interaction data. User activity may be recorded during the use of an application or website, resulting in a type of user interaction data often called click data. An obstacle to the analysis of click data using process mining is the lack of a case identifier in the data. In this paper, we show a case and user study for event-case correlation on click data, in the context of user interaction events from a mobility sharing company. To reconstruct the case notion of the process, we apply a novel method to aggregate user interaction data in separate user sessions-interpreted as cases-based on neural networks. To validate our findings, we qualitatively discuss the impact of process mining analyses on the resulting well-formed event log through interviews with process experts.