Abstract:This paper introduces Artificial Intelligence Clinics on Mobile (AICOM), an open-source project devoted to answering the United Nations Sustainable Development Goal 3 (SDG3) on health, which represents a universal recognition that health is fundamental to human capital and social and economic development. The core motivation for the AICOM project is the fact that over 80% of the people in the least developed countries (LDCs) own a mobile phone, even though less than 40% of these people have internet access. Hence, through enabling AI-based disease diagnostics and screening capability on affordable mobile phones without connectivity will be a critical first step to addressing healthcare access problems. The technologies developed in the AICOM project achieve exactly this goal, and we have demonstrated the effectiveness of AICOM on monkeypox screening tasks. We plan to continue expanding and open-sourcing the AICOM platform, aiming for it to evolve into an universal AI doctor for the Underserved and Hard-to-Reach.
Abstract:Under the Autonomous Mobile Clinics (AMCs) initiative, we are developing, open sourcing, and standardizing health AI technologies to enable healthcare access in least developed countries (LDCs). We deem AMCs as the next generation of health care delivery platforms, whereas health AI engines are applications on these platforms, similar to how various applications expand the usage scenarios of smart phones. Facing the recent global monkeypox outbreak, in this article, we introduce AICOM-MP, an AI-based monkeypox detector specially aiming for handling images taken from resource-constrained devices. Compared to existing AI-based monkeypox detectors, AICOM-MP has achieved state-of-the-art (SOTA) performance. We have hosted AICOM-MP as a web service to allow universal access to monkeypox screening technology. We have also open sourced both the source code and the dataset of AICOM-MP to allow health AI professionals to integrate AICOM-MP into their services. Also, through the AICOM-MP project, we have generalized a methodology of developing health AI technologies for AMCs to allow universal access even in resource-constrained environments.