Abstract:The electrocardiogram (ECG) signal is the most widely used non-invasive tool for the investigation of cardiovascular diseases. Automatic delineation of ECG fiducial points, in particular the R-peak, serves as the basis for ECG processing and analysis. This study proposes a new method of ECG signal analysis by introducing a new class of graphical models based on optimal changepoint detection models, named the graph-constrained changepoint detection (GCCD) model. The GCCD model treats fiducial points delineation in the non-stationary ECG signal as a changepoint detection problem. The proposed model exploits the sparsity of changepoints to detect abrupt changes within the ECG signal; thereby, the R-peak detection task can be relaxed from any preprocessing step. In this novel approach, prior biological knowledge about the expected sequence of changes is incorporated into the model using the constraint graph, which can be defined manually or automatically. First, we define the constraint graph manually; then, we present a graph learning algorithm that can search for an optimal graph in a greedy scheme. Finally, we compare the manually defined graphs and learned graphs in terms of graph structure and detection accuracy. We evaluate the performance of the algorithm using the MIT-BIH Arrhythmia Database. The proposed model achieves an overall sensitivity of 99.64%, positive predictivity of 99.71%, and detection error rate of 0.19 for the manually defined constraint graph and overall sensitivity of 99.76%, positive predictivity of 99.68%, and detection error rate of 0.55 for the automatic learning constraint graph.
Abstract:This study presents a new viewpoint on ECG signal analysis by applying a graph-based changepoint detection model to locate R-peak positions. This model is based on a new graph learning algorithm to learn the constraint graph given the labeled ECG data. The proposed learning algorithm starts with a simple initial graph and iteratively edits the graph so that the final graph has the maximum accuracy in R-peak detection. We evaluate the performance of the algorithm on the MIT-BIH Arrhythmia Database. The evaluation results demonstrate that the proposed method can obtain comparable results to other state-of-the-art approaches. The proposed method achieves the overall sensitivity of Sen = 99.64%, positive predictivity of PPR = 99.71%, and detection error rate of DER = 0.19.
Abstract:Electrocardiogram (ECG) signal is the most commonly used non-invasive tool in the assessment of cardiovascular diseases. Segmentation of the ECG signal to locate its constitutive waves, in particular the R-peaks, is a key step in ECG processing and analysis. Over the years, several segmentation and QRS complex detection algorithms have been proposed with different features; however, their performance highly depends on applying preprocessing steps which makes them unreliable in real-time data analysis of ambulatory care settings and remote monitoring systems, where the collected data is highly noisy. Moreover, some issues still remain with the current algorithms in regard to the diverse morphological categories for the ECG signal and their high computation cost. In this paper, we introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of R-peak positions without employing any preprocessing step. The proposed model guarantees to compute the globally optimal changepoint detection solution. It is also generic in nature and can be applied to other time-series biomedical signals. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55 which are comparable to other state-of-the-art approaches.
Abstract:Many learning algorithms are formulated in terms of finding model parameters which minimize a data-fitting loss function plus a regularizer. When the regularizer involves the l0 pseudo-norm, the resulting regularization path consists of a finite set of models. The fastest existing algorithm for computing the breakpoints in the regularization path is quadratic in the number of models, so it scales poorly to high dimensional problems. We provide new formal proofs that a dynamic programming algorithm can be used to compute the breakpoints in linear time. Empirical results on changepoint detection problems demonstrate the improved accuracy and speed relative to grid search and the previous quadratic time algorithm.