Abstract:Medical datasets are often highly imbalanced with over-representation of common medical problems and a paucity of data from rare conditions. We propose simulation of pathology in images to overcome the above limitations. Using chest X-rays as a model medical image, we implement a generative adversarial network (GAN) to create artificial images based upon a modest sized labeled dataset. We employ a combination of real and artificial images to train a deep convolutional neural network (DCNN) to detect pathology across five classes of chest X-rays. Furthermore, we demonstrate that augmenting the original imbalanced dataset with GAN generated images improves performance of chest pathology classification using the proposed DCNN in comparison to the same DCNN trained with the original dataset alone. This improved performance is largely attributed to balancing of the dataset using GAN generated images, where image classes that are lacking in example images are preferentially augmented.
Abstract:Pathfinding in hospitals is challenging for patients, visitors, and even employees. Many people have experienced getting lost due to lack of clear guidance, large footprint of hospitals, and confusing array of hospital wings. In this paper, we propose Halo; An indoor navigation application based on voice-user interaction to help provide directions for users without assistance of a localization system. The main challenge is accurate detection of origin and destination search terms. A custom convolutional neural network (CNN) is proposed to detect origin and destination search terms from transcription of a submitted speech query. The CNN is trained based on a set of queries tailored specifically for hospital and clinic environments. Performance of the proposed model is studied and compared with Levenshtein distance-based word matching.
Abstract:Radiology reports are an important means of communication between radiologists and other physicians. These reports express a radiologist's interpretation of a medical imaging examination and are critical in establishing a diagnosis and formulating a treatment plan. In this paper, we propose a Bi-directional convolutional neural network (Bi-CNN) model for the interpretation and classification of mammograms based on breast density and chest radiographic radiology reports based on the basis of chest pathology. The proposed approach helps to organize databases of radiology reports, retrieve them expeditiously, and evaluate the radiology report that could be used in an auditing system to decrease incorrect diagnoses. Our study revealed that the proposed Bi-CNN outperforms the random forest and the support vector machine methods.