Abstract:This paper introduces a novel method to enhance the connectivity of multi-reconfigurable intelligent surface-assisted device-to-device networks, referred to as multi-RIS-assisted D2D networks, through a unique phase shift determination. The proposed method aims to optimize the power-domain array factor (PDAF), targeting specific azimuth angles of reliable user equipments (UEs) and enhancing network connectivity. We formulate an optimization problem that jointly optimizes RIS beamforming design, RIS-aided link selection, and RIS positioning. This problem is a mixed-integer non-binary programming. The optimization problem is divided into two sub-problems, which are solved individually and iteratively. The first sub-problem of RIS-aided link selection is solved using an efficient perturbation method while developing genetic algorithm (GA) to obtain RIS beamforming design. The GA optimizes the RIS phase shift to generate multiple RIS-aided narrowbeams that exhibit significant PDAF towards azimuth angles of interest while minimizing PDAF towards undesired azimuth angles. The second sub-problem of RIS positioning is addressed using the Adam optimizer. Numerical simulations verify the superiority of the proposed scheme in improving network connectivity compared to other schemes, including those utilizing distributed small RISs, each generating one RIS-aided link.
Abstract:Time series classification stands as a pivotal and intricate challenge across various domains, including finance, healthcare, and industrial systems. In contemporary research, there has been a notable upsurge in exploring feature extraction through random sampling. Unlike deep convolutional networks, these methods sidestep elaborate training procedures, yet they often necessitate generating a surplus of features to comprehensively encapsulate time series nuances. Consequently, some features may lack relevance to labels or exhibit multi-collinearity with others. In this paper, we propose a novel hierarchical feature selection method aided by ANOVA variance analysis to address this challenge. Through meticulous experimentation, we demonstrate that our method substantially reduces features by over 94% while preserving accuracy -- a significant advancement in the field of time series analysis and feature selection.
Abstract:A reconfigurable intelligent surface (RIS) is composed of low-cost elements that manipulate the propagation environment from a transmitter by intelligently applying phase shifts to incoming signals before they are reflected. This paper explores a uni-polarized RIS with linear shape aimed at transmitting a common signal to multiple user equipments (UEs) spread across a wide angular region. To achieve uniform coverage, the uni-polarized RIS is designed to emit a broad and spectral-efficient beam featuring a spatially flat-like array factor, diverging from the conventional narrow beam approach. To achieve this objective, we start by deriving probabilistic lower and upper bounds for the average spectral efficiency (SE) delivered to the UEs. Leveraging the insights from the lower bound, we focus on optimizing the minimum value of the power domain array factor (PDAF) across a range of azimuth angles from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\). We employ the continuous genetic algorithm (CGA) for this optimization task, aiming to improve the SE delivered to the UEs while also creating a wide beam. Extensive simulation experiments are carried out to assess the performance of the proposed code, focusing on key metrics such as the minimum and average values of the PDAF and the SE delivered to the UEs. Our findings demonstrate that the proposed code enhances the minimum SE delivered to the UEs while maintaining the desired attribute of a broad beam. This performance is notably superior to that of established codes, including the Barker, Frank, and Chu codes.
Abstract:This paper introduces an indoor localization method using fixed reflector objects within the environment, leveraging a base station (BS) equipped with Angle of Arrival (AoA) and Time of Arrival (ToA) measurement capabilities. The localization process includes two phases. In the offline phase, we identify effective reflector points within a specific region using significantly fewer test points than typical methods. In the online phase, we solve a maximization problem to locate users based on BS measurements and offline phase information. We introduce the reflectivity parameter (\(n_r\)), which quantifies the typical number of first-order reflection paths from the transmitter to the receiver, demonstrating its impact on localization accuracy. The log-scale accuracy ratio (\(R_a\)) is defined as the logarithmic function of the localization area divided by the localization ambiguity area, serving as an accuracy indicator. We show that in scenarios where the Signal-to-Noise Ratio (SNR) approaches infinity, without a line of sight (LoS) link, \(R_a\) is upper-bounded by \(n_r \log_{2}\left(1 + \frac{\mathrm{Vol}(\mathcal{S}_A)}{\mathrm{Vol}(\mathcal{S}_{\epsilon}(\mathcal{M}_s))}\right)\). Here, \(\mathrm{Vol}(\mathcal{S}_A)\) and \(\mathrm{Vol}(\mathcal{S}_{\epsilon}(\mathcal{M}_s))\) represent the areas of the localization region and the area containing all reflector points with a probability of at least \(1 - \epsilon\), respectively.
Abstract:Hypertension is commonly referred to as the "silent killer", since it can lead to severe health complications without any visible symptoms. Early detection of hypertension is crucial in preventing significant health issues. Although some studies suggest a relationship between blood pressure and certain vital signals, such as Photoplethysmogram (PPG), reliable generalization of the proposed blood pressure estimation methods is not yet guaranteed. This lack of certainty has resulted in some studies doubting the existence of such relationships, or considering them weak and limited to heart rate and blood pressure. In this paper, a high-dimensional representation technique based on random convolution kernels is proposed for hypertension detection using PPG signals. The results show that this relationship extends beyond heart rate and blood pressure, demonstrating the feasibility of hypertension detection with generalization. Additionally, the utilized transform using convolution kernels, as an end-to-end time-series feature extractor, outperforms the methods proposed in the previous studies and state-of-the-art deep learning models.
Abstract:Reconfigurable intelligent surfaces (RISs) are expected to be a main component of future 6G networks, due to their capability to create a controllable wireless environment, and achieve extended coverage and improved localization accuracy. In this paper, we present a novel cooperative positioning use case of the RIS in mmWave frequencies, and show that in the presence of RIS, together with sidelink communications, localization with zero access points (APs) is possible. We show that multiple (at least three) half-duplex single-antenna user equipments (UEs) can cooperatively estimate their positions through device-to-device communications with a single RIS as an anchor without the need for any APs. We start by formulating a three-dimensional positioning problem with Cram\'er-Rao lower bound (CRLB) derived for performance analysis. After that, we discuss the RIS profile design and the power allocation strategy between the UEs. Then, we propose low-complexity estimators for estimating the channel parameters and UEs' positions. Finally, we evaluate the performance of the proposed estimators and RIS profiles in the considered scenario via extensive simulations and show that sub-meter level positioning accuracy can be achieved under multi-path propagation.
Abstract:A smart city involves, among other elements, intelligent transportation, crowd monitoring, and digital twins, each of which requires information exchange via wireless communication links and localization of connected devices and passive objects (including people). Although localization and sensing (L&S) are envisioned as core functions of future communication systems, they have inherently different demands in terms of infrastructure compared to communications. Wireless communications generally requires a connection to only a single access point (AP), while L&S demand simultaneous line-of-sight propagation paths to several APs, which serve as location and orientation anchors. Hence, a smart city deployment optimized for communication will be insufficient to meet stringent L&S requirements. In this article, we argue that the emerging technologies of reconfigurable intelligent surfaces (RISs) and sidelink communications constitute the key to providing ubiquitous coverage for L&S in smart cities with low-cost and energy-efficient technical solutions. To this end, we propose and evaluate AP-coordinated and self-coordinated RIS-enabled L&S architectures and detail three groups of application scenarios, relying on low-complexity beacons, cooperative localization, and full-duplex transceivers. A list of practical issues and consequent open research challenges of the proposed L&S systems is also provided.
Abstract:Random convolution kernel transform (Rocket) is a fast, efficient, and novel approach for time series feature extraction, using a large number of randomly initialized convolution kernels, and classification of the represented features with a linear classifier, without training the kernels. Since these kernels are generated randomly, a portion of these kernels may not positively contribute in performance of the model. Hence, selection of the most important kernels and pruning the redundant and less important ones is necessary to reduce computational complexity and accelerate inference of Rocket. Selection of these kernels is a combinatorial optimization problem. In this paper, the kernels selection process is modeled as an optimization problem and a population-based approach is proposed for selecting the most important kernels. This approach is evaluated on the standard time series datasets and the results show that on average it can achieve a similar performance to the original models by pruning more than 60% of kernels. In some cases, it can achieve a similar performance using only 1% of the kernels.
Abstract:This paper proposes a cooperative angle-of-arrival(AoA) estimation, taking advantage of co-processing channel state information (CSI) from a group of access points that receive signals of the same source. Since received signals are sparse, we use Compressive Sensing (CS) to address the AoA estimation problem. We formulate this problem as a penalized l0-norm minimization, reformulate it as an Ising energy problem, and solve it using Markov Chain Monte Carlo (MCMC). Simulation results show that our proposed method outperforms the existing methods in the literature.
Abstract:A typical deep neural network (DNN) has a large number of trainable parameters. Choosing a network with proper capacity is challenging and generally a larger network with excessive capacity is trained. Pruning is an established approach to reducing the number of parameters in a DNN. In this paper, we propose a framework for pruning DNNs based on a population-based global optimization method. This framework can use any pruning objective function. As a case study, we propose a simple but efficient objective function based on the concept of energy-based models. Our experiments on ResNets, AlexNet, and SqueezeNet for the CIFAR-10 and CIFAR-100 datasets show a pruning rate of more than $50\%$ of the trainable parameters with approximately $<5\%$ and $<1\%$ drop of Top-1 and Top-5 classification accuracy, respectively.