Abstract:Autonomous vehicles (AVs) have demonstrated significant potential in revolutionizing transportation, yet ensuring their safety and reliability remains a critical challenge, especially when exposed to dynamic and unpredictable environments. Real-world testing of an Autonomous Driving System (ADS) is both expensive and risky, making simulation-based testing a preferred approach. In this paper, we propose AVASTRA, a Reinforcement Learning (RL)-based approach to generate realistic critical scenarios for testing ADSs in simulation environments. To capture the complexity of driving scenarios, AVASTRA comprehensively represents the environment by both the internal states of an ADS under-test (e.g., the status of the ADS's core components, speed, or acceleration) and the external states of the surrounding factors in the simulation environment (e.g., weather, traffic flow, or road condition). AVASTRA trains the RL agent to effectively configure the simulation environment that places the AV in dangerous situations and potentially leads it to collisions. We introduce a diverse set of actions that allows the RL agent to systematically configure both environmental conditions and traffic participants. Additionally, based on established safety requirements, we enforce heuristic constraints to ensure the realism and relevance of the generated test scenarios. AVASTRA is evaluated on two popular simulation maps with four different road configurations. Our results show AVASTRA's ability to outperform the state-of-the-art approach by generating 30% to 115% more collision scenarios. Compared to the baseline based on Random Search, AVASTRA achieves up to 275% better performance. These results highlight the effectiveness of AVASTRA in enhancing the safety testing of AVs through realistic comprehensive critical scenario generation.
Abstract:Large Language Models for Code (code LLMs) have demonstrated remarkable performance across various software engineering (SE) tasks, increasing the application of code LLMs in software development. Despite the success of code LLMs, there remain significant concerns about the actual capabilities and reliability of these models, "whether these models really learn the semantics of code from the training data and leverage the learned knowledge to perform the SE tasks". In this paper, we introduce EMPICA, a comprehensive framework designed to systematically and empirically evaluate the capabilities of code LLMs in understanding code semantics. Specifically, EMPICA systematically introduces controlled modifications/transformations into the input code and examines the models' responses. Generally, code LLMs must be robust to semantically equivalent code inputs and be sensitive to non-equivalent ones for all SE tasks. Specifically, for every SE task, given an input code snippet c and its semantic equivalent variants, code LLMs must robustly produce consistent/equivalent outputs while they are expected to generate different outputs for c and its semantic non-equivalent variants. Our experimental results on three representative code understanding tasks, including code summarization, method name prediction, and output prediction, reveal that the robustness and sensitivity of the state-of-the-art code LLMs to code transformations vary significantly across tasks and transformation operators. In addition, the code LLMs exhibit better robustness to the semantic preserving transformations than their sensitivity to the semantic non-preserving transformations. These results highlight a need to enhance the model's capabilities of understanding code semantics, especially the sensitivity property.
Abstract:Learning and remembering to use APIs are difficult. Several techniques have been proposed to assist developers in using APIs. Most existing techniques focus on recommending the right API methods to call, but very few techniques focus on recommending API arguments. In this paper, we propose ARIST, a novel automated argument recommendation approach which suggests arguments by predicting developers' expectations when they define and use API methods. To implement this idea in the recommendation process, ARIST combines program analysis (PA), language models (LMs), and several features specialized for the recommendation task which consider the functionality of formal parameters and the positional information of code elements (e.g., variables or method calls) in the given context. In ARIST, the LMs and the recommending features are used to suggest the promising candidates identified by PA. Meanwhile, PA navigates the LMs and the features working on the set of the valid candidates which satisfy syntax, accessibility, and type-compatibility constraints defined by the programming language in use. Our evaluation on a large dataset of real-world projects shows that ARIST improves the state-of-the-art approach by 19% and 18% in top-1 precision and recall for recommending arguments of frequently-used libraries. For general argument recommendation task, i.e., recommending arguments for every method call, ARIST outperforms the baseline approaches by up to 125% top-1 accuracy. Moreover, for newly-encountered projects, ARIST achieves more than 60% top-3 accuracy when evaluating on a larger dataset. For working/maintaining projects, with a personalized LM to capture developers' coding practice, ARIST can productively rank the expected arguments at the top-1 position in 7/10 requests.