Abstract:With the increasing capabilities of machine learning systems and their potential use in safety-critical systems, ensuring high-quality data is becoming increasingly important. In this paper we present a novel approach for the assurance of data quality. For this purpose, the mathematical basics are first discussed and the approach is presented using multiple examples. This results in the detection of data points with potentially harmful properties for the use in safety-critical systems.
Abstract:The importance of high data quality is increasing with the growing impact and distribution of ML systems and big data. Also the planned AI Act from the European commission defines challenging legal requirements for data quality especially for the market introduction of safety relevant ML systems. In this paper we introduce a novel approach that supports the data quality assurance process of multiple data quality aspects. This approach enables the verification of quantitative data quality requirements. The concept and benefits are introduced and explained on small example data sets. How the method is applied is demonstrated on the well known MNIST data set based an handwritten digits.
Abstract:Traditional automation technologies alone are not sufficient to enable driverless operation of trains (called Grade of Automation (GoA) 4) on non-restricted infrastructure. The required perception tasks are nowadays realized using Machine Learning (ML) and thus need to be developed and deployed reliably and efficiently. One important aspect to achieve this is to use an MLOps process for tackling improved reproducibility, traceability, collaboration, and continuous adaptation of a driverless operation to changing conditions. MLOps mixes ML application development and operation (Ops) and enables high frequency software releases and continuous innovation based on the feedback from operations. In this paper, we outline a safe MLOps process for the continuous development and safety assurance of ML-based systems in the railway domain. It integrates system engineering, safety assurance, and the ML life-cycle in a comprehensive workflow. We present the individual stages of the process and their interactions. Moreover, we describe relevant challenges to automate the different stages of the safe MLOps process.