Abstract:This paper introduces a novel two-stream deep model based on graph convolutional network (GCN) architecture and feed-forward neural networks (FFNN) for learning the solution of nonlinear partial differential equations (PDEs). The model aims at incorporating both graph and grid input representations using two streams corresponding to GCN and FFNN models, respectively. Each stream layer receives and processes its own input representation. As opposed to FFNN which receives a grid-like structure, the GCN stream layer operates on graph input data where the neighborhood information is incorporated through the adjacency matrix of the graph. In this way, the proposed GCN-FFNN model learns from two types of input representations, i.e. grid and graph data, obtained via the discretization of the PDE domain. The GCN-FFNN model is trained in two phases. In the first phase, the model parameters of each stream are trained separately. Both streams employ the same error function to adjust their parameters by enforcing the models to satisfy the given PDE as well as its initial and boundary conditions on grid or graph collocation (training) data. In the second phase, the learned parameters of two-stream layers are frozen and their learned representation solutions are fed to fully connected layers whose parameters are learned using the previously used error function. The learned GCN-FFNN model is tested on test data located both inside and outside the PDE domain. The obtained numerical results demonstrate the applicability and efficiency of the proposed GCN-FFNN model over individual GCN and FFNN models on 1D-Burgers, 1D-Schr\"odinger, 2D-Burgers and 2D-Schr\"odinger equations.
Abstract:Reliable weather forecasting is of great importance in science, business and society. The best performing data-driven models for weather prediction tasks rely on recurrent or convolutional neural networks, where some of which incorporate attention mechanisms. In this work, we introduce a new model based on the Transformer architecture for weather forecasting. The proposed Tensorial Encoder Transformer (TENT) model is equipped with tensorial attention and thus it exploits the spatiotemporal structure of weather data by processing it in multidimensional tensorial format. We show that compared to the encoder part of the original transformer and 3D convolutional neural networks, the proposed TENT model can better model the underlying complex pattern of weather data for the studied temperature prediction task. Experiments on two real-life weather datasets are performed. The datasets consist of historical measurements from USA, Canada and European cities. The first dataset contains hourly measurements of weather attributes for 30 cities in USA and Canada from October 2012 to November 2017. The second dataset contains daily measurements of weather attributes of 18 cities across Europe from May 2005 to April 2020. We use attention scores calculated from our attention mechanism to shed light on the decision-making process of our model and have insight knowledge on the most important cities for the task.