Abstract:Transformers have recently gained prominence in long time series forecasting by elevating accuracies in a variety of use cases. Regrettably, in the race for better predictive performance the overhead of model architectures has grown onerous, leading to models with computational demand infeasible for most practical applications. To bridge the gap between high method complexity and realistic computational resources, we introduce the Residual Cyclic Transformer, ReCycle. ReCycle utilizes primary cycle compression to address the computational complexity of the attention mechanism in long time series. By learning residuals from refined smoothing average techniques, ReCycle surpasses state-of-the-art accuracy in a variety of application use cases. The reliable and explainable fallback behavior ensured by simple, yet robust, smoothing average techniques additionally lowers the barrier for user acceptance. At the same time, our approach reduces the run time and energy consumption by more than an order of magnitude, making both training and inference feasible on low-performance, low-power and edge computing devices. Code is available at https://github.com/Helmholtz-AI-Energy/ReCycle
Abstract:This article presents a novel hybrid approach using statistics and machine learning to forecast the national demand of electricity. As investment and operation of future energy systems require long-term electricity demand forecasts with hourly resolution, our mathematical model fills a gap in energy forecasting. The proposed methodology was constructed using hourly data from Ukraine's electricity consumption ranging from 2013 to 2020. To this end, we analysed the underlying structure of the hourly, daily and yearly time series of electricity consumption. The long-term yearly trend is evaluated using macroeconomic regression analysis. The mid-term model integrates temperature and calendar regressors to describe the underlying structure, and combines ARIMA and LSTM ``black-box'' pattern-based approaches to describe the error term. The short-term model captures the hourly seasonality through calendar regressors and multiple ARMA models for the residual. Results show that the best forecasting model is composed by combining multiple regression models and a LSTM hybrid model for residual prediction. Our hybrid model is very effective at forecasting long-term electricity consumption on an hourly resolution. In two years of out-of-sample forecasts with 17520 timesteps, it is shown to be within 96.83 \% accuracy.
Abstract:This paper presents a new algorithm to extract device profiles fully unsupervised from three phases reactive and active aggregate power measurements. The extracted device profiles are applied for the disaggregation of the aggregate power measurements using particle swarm optimization. Finally, this paper provides a new approach for short term power predictions using the disaggregation data. For this purpose, a state changes forecast for every device is carried out by an artificial neural network and converted into a power prediction afterwards by reconstructing the power regarding the state changes and the device profiles. The forecast horizon is 15 minutes. To demonstrate the developed approaches, three phase reactive and active aggregate power measurements of a multi-tenant commercial building are used. The granularity of data is 1 s. In this work, 52 device profiles are extracted from the aggregate power data. The disaggregation shows a very accurate reconstruction of the measured power with a percentage energy error of approximately 1 %. The developed indirect power prediction method applied to the measured power data outperforms two persistence forecasts and an artificial neural network, which is designed for 24h-day-ahead power predictions working in the power domain.