Abstract:In this research, we compare malware detection techniques based on static, dynamic, and hybrid analysis. Specifically, we train Hidden Markov Models (HMMs ) on both static and dynamic feature sets and compare the resulting detection rates over a substantial number of malware families. We also consider hybrid cases, where dynamic analysis is used in the training phase, with static techniques used in the detection phase, and vice versa. In our experiments, a fully dynamic approach generally yields the best detection rates. We discuss the implications of this research for malware detection based on hybrid techniques.
Abstract:In this paper, we explore the effectiveness of dynamic analysis techniques for identifying malware, using Hidden Markov Models (HMMs) and Profile Hidden Markov Models (PHMMs), both trained on sequences of API calls. We contrast our results to static analysis using HMMs trained on sequences of opcodes, and show that dynamic analysis achieves significantly stronger results in many cases. Furthermore, in contrasting our two dynamic analysis techniques, we find that using PHMMs consistently outperforms our analysis based on HMMs.