Abstract:Deep Gaussian processes have recently been proposed as natural objects to fit, similarly to deep neural networks, possibly complex features present in modern data samples, such as compositional structures. Adopting a Bayesian nonparametric approach, it is natural to use deep Gaussian processes as prior distributions, and use the corresponding posterior distributions for statistical inference. We introduce the deep Horseshoe Gaussian process Deep-HGP, a new simple prior based on deep Gaussian processes with a squared-exponential kernel, that in particular enables data-driven choices of the key lengthscale parameters. For nonparametric regression with random design, we show that the associated tempered posterior distribution recovers the unknown true regression curve optimally in terms of quadratic loss, up to a logarithmic factor, in an adaptive way. The convergence rates are simultaneously adaptive to both the smoothness of the regression function and to its structure in terms of compositions. The dependence of the rates in terms of dimension are explicit, allowing in particular for input spaces of dimension increasing with the number of observations.
Abstract:By now Bayesian methods are routinely used in practice for solving inverse problems. In inverse problems the parameter or signal of interest is observed only indirectly, as an image of a given map, and the observations are typically further corrupted with noise. Bayes offers a natural way to regularize these problems via the prior distribution and provides a probabilistic solution, quantifying the remaining uncertainty in the problem. However, the computational costs of standard, sampling based Bayesian approaches can be overly large in such complex models. Therefore, in practice variational Bayes is becoming increasingly popular. Nevertheless, the theoretical understanding of these methods is still relatively limited, especially in context of inverse problems. In our analysis we investigate variational Bayesian methods for Gaussian process priors to solve linear inverse problems. We consider both mildly and severely ill-posed inverse problems and work with the popular inducing variables variational Bayes approach proposed by Titsias in 2009. We derive posterior contraction rates for the variational posterior in general settings and show that the minimax estimation rate can be attained by correctly tunned procedures. As specific examples we consider a collection of inverse problems including the heat equation, Volterra operator and Radon transform and inducing variable methods based on population and empirical spectral features.