Abstract:Segmentation of tubular structures in vascular imaging is a well studied task, although it is rare that we try to infuse knowledge of the tree-like structure of the regions to be detected. Our work focuses on detecting the important landmarks in the vascular network (via CNN performing both localization and classification of the points of interest) and representing vessels as the edges in some minimal distance tree graph. We leverage geodesic methods relevant to the detection of vessels and their geometry, making use of the space of positions and orientations so that 2D vessels can be accurately represented as trees. We build our model to carry tracking on Ultrasound Localization Microscopy (ULM) data, proposing to build a good cost function for tracking on this type of data. We also test our framework on synthetic and eye fundus data. Results show that scarcity of well annotated ULM data is an obstacle to localization of vascular landmarks but the Orientation Score built from ULM data yields good geodesics for tracking blood vessels.
Abstract:Leveraging geodesic distances and the geometrical information they convey is key for many data-oriented applications in imaging. Geodesic distance computation has been used for long for image segmentation using Image based metrics. We introduce a new method by generating isotropic Riemannian metrics adapted to a problem using CNN and give as illustrations an example of application. We then apply this idea to the segmentation of brain tumours as unit balls for the geodesic distance computed with the metric potential output by a CNN, thus imposing geometrical and topological constraints on the output mask. We show that geodesic distance modules work well in machine learning frameworks and can be used to achieve state-of-the-art performances while ensuring geometrical and/or topological properties.