Abstract:Mental health constitutes a complex and pervasive global challenge, affecting millions of lives and often leading to severe consequences. In this paper, we conduct a thorough survey to explore the intersection of data science, artificial intelligence, and mental healthcare, focusing on the recent developments of mental disorder detection through online social media (OSM). A significant portion of the population actively engages in OSM platforms, creating a vast repository of personal data that holds immense potential for mental health analytics. The paper navigates through traditional diagnostic methods, state-of-the-art data- and AI-driven research studies, and the emergence of explainable AI (XAI) models for mental healthcare. We review state-of-the-art machine learning methods, particularly those based on modern deep learning, while emphasising the need for explainability in healthcare AI models. The experimental design section provides insights into prevalent practices, including available datasets and evaluation approaches. We also identify key issues and challenges in the field and propose promising future research directions. As mental health decisions demand transparency, interpretability, and ethical considerations, this paper contributes to the ongoing discourse on advancing XAI in mental healthcare through social media. The comprehensive overview presented here aims to guide researchers, practitioners, and policymakers in developing the area of mental disorder detection.
Abstract:With the rising demand of smart mobility, ride-hailing service is getting popular in the urban regions. These services maintain a system for serving the incoming trip requests by dispatching available vehicles to the pickup points. As the process should be socially and economically profitable, the task of vehicle dispatching is highly challenging, specially due to the time-varying travel demands and traffic conditions. Due to the uneven distribution of travel demands, many idle vehicles could be generated during the operation in different subareas. Most of the existing works on vehicle dispatching system, designed static relocation centers to relocate idle vehicles. However, as traffic conditions and demand distribution dynamically change over time, the static solution can not fit the evolving situations. In this paper, we propose a dynamic future demand aware vehicle dispatching system. It can dynamically search the relocation centers considering both travel demand and traffic conditions. We evaluate the system on real-world dataset, and compare with the existing state-of-the-art methods in our experiments in terms of several standard evaluation metrics and operation time. Through our experiments, we demonstrate that the proposed system significantly improves the serving ratio and with a very small increase in operation cost.