Abstract:Full waveform inversion (FWI) often faces challenges due to inadequate seismic observations, resulting in band-limited and geologically inaccurate inversion results. Incorporating prior information from potential velocity distributions, well-log information, and our geological knowledge and expectations can significantly improve FWI convergence to a realistic model. While diffusion-regularized FWI has shown improved performance compared to conventional FWI by incorporating the velocity distribution prior, it can benefit even more by incorporating well-log information and other geological knowledge priors. To leverage this fact, we propose a geological class and well-information prior-assisted FWI using conditional diffusion models. This method seamlessly integrates multi-modal information into FWI, simultaneously achieving data fitting and universal geologic and geophysics prior matching, which is often not achieved with traditional regularization methods. Specifically, we propose to combine conditional diffusion models with FWI, where we integrate well-log data and geological class conditions into these conditional diffusion models using classifier-free guidance for multi-modal prior matching beyond the original velocity distribution prior. Numerical experiments on the OpenFWI datasets and field marine data demonstrate the effectiveness of our method compared to conventional FWI and the unconditional diffusion-regularized FWI.
Abstract:Building subsurface velocity models is essential to our goals in utilizing seismic data for Earth discovery and exploration, as well as monitoring. With the dawn of machine learning, these velocity models (or, more precisely, their distribution) can be stored accurately and efficiently in a generative model. These stored velocity model distributions can be utilized to regularize or quantify uncertainties in inverse problems, like full waveform inversion. However, most generators, like normalizing flows or diffusion models, treat the image (velocity model) uniformly, disregarding spatial dependencies and resolution changes with respect to the observation locations. To address this weakness, we introduce VelocityGPT, a novel implementation that utilizes Transformer decoders trained autoregressively to generate a velocity model from shallow subsurface to deep. Owing to the fact that seismic data are often recorded on the Earth's surface, a top-down generator can utilize the inverted information in the shallow as guidance (prior) to generating the deep. To facilitate the implementation, we use an additional network to compress the velocity model. We also inject prior information, like well or structure (represented by a migration image) to generate the velocity model. Using synthetic data, we demonstrate the effectiveness of VelocityGPT as a promising approach in generative model applications for seismic velocity model building.
Abstract:Carbon capture and storage (CCS) plays a crucial role in mitigating greenhouse gas emissions, particularly from industrial outputs. Using seismic monitoring can aid in an accurate and robust monitoring system to ensure the effectiveness of CCS and mitigate associated risks. However, conventional seismic wave equation-based approaches are computationally demanding, which hinders real-time applications. In addition to efficiency, forecasting and uncertainty analysis are not easy to handle using such numerical-simulation-based approaches. To this end, we propose a novel subsurface multiphysics monitoring and forecasting framework utilizing video diffusion models. This approach can generate high-quality representations of CO$2$ evolution and associated changes in subsurface elastic properties. With reconstruction guidance, forecasting and inversion can be achieved conditioned on historical frames and/or observational data. Meanwhile, due to the generative nature of the approach, we can quantify uncertainty in the prediction. Tests based on the Compass model show that the proposed method successfully captured the inherently complex physical phenomena associated with CO$_2$ monitoring, and it can predict and invert the subsurface elastic properties and CO$_2$ saturation with consistency in their evolution.
Abstract:Accurate seismic velocity estimations are vital to understanding Earth's subsurface structures, assessing natural resources, and evaluating seismic hazards. Machine learning-based inversion algorithms have shown promising performance in regional (i.e., for exploration) and global velocity estimation, while their effectiveness hinges on access to large and diverse training datasets whose distributions generally cover the target solutions. Additionally, enhancing the precision and reliability of velocity estimation also requires incorporating prior information, e.g., geological classes, well logs, and subsurface structures, but current statistical or neural network-based methods are not flexible enough to handle such multi-modal information. To address both challenges, we propose to use conditional generative diffusion models for seismic velocity synthesis, in which we readily incorporate those priors. This approach enables the generation of seismic velocities that closely match the expected target distribution, offering datasets informed by both expert knowledge and measured data to support training for data-driven geophysical methods. We demonstrate the flexibility and effectiveness of our method through training diffusion models on the OpenFWI dataset under various conditions, including class labels, well logs, reflectivity images, as well as the combination of these priors. The performance of the approach under out-of-distribution conditions further underscores its generalization ability, showcasing its potential to provide tailored priors for velocity inverse problems and create specific training datasets for machine learning-based geophysical applications.
Abstract:Recently, Physics-Informed Neural Networks (PINNs) have gained significant attention for their versatile interpolation capabilities in solving partial differential equations (PDEs). Despite their potential, the training can be computationally demanding, especially for intricate functions like wavefields. This is primarily due to the neural-based (learned) basis functions, biased toward low frequencies, as they are dominated by polynomial calculations, which are not inherently wavefield-friendly. In response, we propose an approach to enhance the efficiency and accuracy of neural network wavefield solutions by modeling them as linear combinations of Gabor basis functions that satisfy the wave equation. Specifically, for the Helmholtz equation, we augment the fully connected neural network model with an adaptable Gabor layer constituting the final hidden layer, employing a weighted summation of these Gabor neurons to compute the predictions (output). These weights/coefficients of the Gabor functions are learned from the previous hidden layers that include nonlinear activation functions. To ensure the Gabor layer's utilization across the model space, we incorporate a smaller auxiliary network to forecast the center of each Gabor function based on input coordinates. Realistic assessments showcase the efficacy of this novel implementation compared to the vanilla PINN, particularly in scenarios involving high-frequencies and realistic models that are often challenging for PINNs.
Abstract:The computation of the seismic wavefield by solving the Helmholtz equation is crucial to many practical applications, e.g., full waveform inversion. Physics-informed neural networks (PINNs) provide functional wavefield solutions represented by neural networks (NNs), but their convergence is slow. To address this problem, we propose a modified PINN using multiplicative filtered networks, which embeds some of the known characteristics of the wavefield in training, e.g., frequency, to achieve much faster convergence. Specifically, we use the Gabor basis function due to its proven ability to represent wavefields accurately and refer to the implementation as GaborPINN. Meanwhile, we incorporate prior information on the frequency of the wavefield into the design of the method to mitigate the influence of the discontinuity of the represented wavefield by GaborPINN. The proposed method achieves up to a two-magnitude increase in the speed of convergence as compared with conventional PINNs.
Abstract:StorSeismic is a recently introduced model based on the Transformer to adapt to various seismic processing tasks through its pretraining and fine-tuning training strategy. In the original implementation, StorSeismic utilized a sinusoidal positional encoding and a conventional self-attention mechanism, both borrowed from the natural language processing (NLP) applications. For seismic processing they admitted good results, but also hinted to limitations in efficiency and expressiveness. We propose modifications to these two key components, by utilizing relative positional encoding and low-rank attention matrices as replacements to the vanilla ones. The proposed changes are tested on processing tasks applied to a realistic Marmousi and offshore field data as a sequential strategy, starting from denoising, direct arrival removal, multiple attenuation, and finally root-mean-squared velocity ($V_{RMS}$) prediction for normal moveout (NMO) correction. We observe faster pretraining and competitive results on the fine-tuning tasks and, additionally, fewer parameters to train compared to the vanilla model.
Abstract:Microseismic event detection and location are two primary components in microseismic monitoring, which offers us invaluable insights into the subsurface during reservoir stimulation and evolution. Conventional approaches for event detection and location often suffer from manual intervention and/or heavy computation, while current machine learning-assisted approaches typically address detection and location separately; such limitations hinder the potential for real-time microseismic monitoring. We propose an approach to unify event detection and source location into a single framework by adapting a Convolutional Neural Network backbone and an encoder-decoder Transformer with a set-based Hungarian loss, which is applied directly to recorded waveforms. The proposed network is trained on synthetic data simulating multiple microseismic events corresponding to random source locations in the area of suspected microseismic activities. A synthetic test on a 2D profile of the SEAM Time Lapse model illustrates the capability of the proposed method in detecting the events properly and locating them in the subsurface accurately; while, a field test using the Arkoma Basin data further proves its practicability, efficiency, and its potential in paving the way for real-time monitoring of microseismic events.
Abstract:Full waveform inversion (FWI) has the potential to provide high-resolution subsurface model estimations. However, due to limitations in observation, e.g., regional noise, limited shots or receivers, and band-limited data, it is hard to obtain the desired high-resolution model with FWI. To address this challenge, we propose a new paradigm for FWI regularized by generative diffusion models. Specifically, we pre-train a diffusion model in a fully unsupervised manner on a prior velocity model distribution that represents our expectations of the subsurface and then adapt it to the seismic observations by incorporating the FWI into the sampling process of the generative diffusion models. What makes diffusion models uniquely appropriate for such an implementation is that the generative process retains the form and dimensions of the velocity model. Numerical examples demonstrate that our method can outperform the conventional FWI with only negligible additional computational cost. Even in cases of very sparse observations or observations with strong noise, the proposed method could still reconstruct a high-quality subsurface model. Thus, we can incorporate our prior expectations of the solutions in an efficient manner. We further test this approach on field data, which demonstrates the effectiveness of the proposed method.
Abstract:Interpolation of aliased seismic data constitutes a key step in a seismic processing workflow to obtain high quality velocity models and seismic images. Leveraging on the idea of describing seismic wavefields as a superposition of local plane waves, we propose to interpolate seismic data by utilizing a physics informed neural network (PINN). In the proposed framework, two feed-forward neural networks are jointly trained using the local plane wave differential equation as well as the available data as two terms in the objective function: a primary network assisted by positional encoding is tasked with reconstructing the seismic data, whilst an auxiliary, smaller network estimates the associated local slopes. Results on synthetic and field data validate the effectiveness of the proposed method in handling aliased (sampled coarsely) data and data with large gaps. Our method compares favorably against a classic least-squares inversion approach regularized by the local plane-wave equation as well as a PINN-based approach with a single network and pre-computed local slopes. We find that by introducing a second network to estimate the local slopes whilst at the same time interpolating the aliased data, the overall reconstruction capabilities and convergence behavior of the primary network is enhanced. An additional positional encoding, embedded as a network layer, confers to the network the ability to converge faster improving the accuracy of the data term.