Abstract:Type 2 Diabetes is a fast-growing, chronic metabolic disorder due to imbalanced insulin activity.The motion of this research is a comparative study of seven machine learning classifiers and an artificial neural network method to prognosticate the detection and treatment of diabetes with high accuracy,in order to identify and treat diabetes patients at an early age.Our training and test dataset is an accumulation of 9483 diabetes patients information.The training dataset is large enough to negate overfitting and provide for highly accurate test performance.We use performance measures such as accuracy and precision to find out the best algorithm deep ANN which outperforms with 95.14% accuracy among all other tested machine learning classifiers.We hope our high-performing model can be used by hospitals to predict diabetes and drive research into more accurate prediction models.
Abstract:Building datasets of creative text, such as humor, is quite challenging. We introduce FunLines, a competitive game where players edit news headlines to make them funny, and where they rate the funniness of headlines edited by others. FunLines makes the humor generation process fun, interactive, collaborative, rewarding and educational, keeping players engaged and providing humor data at a very low cost compared to traditional crowdsourcing approaches. FunLines offers useful performance feedback, assisting players in getting better over time at generating and assessing humor, as our analysis shows. This helps to further increase the quality of the generated dataset. We show the effectiveness of this data by training humor classification models that outperform a previous benchmark, and we release this dataset to the public.