Abstract:Falls among the elderly are a major health concern, frequently resulting in serious injuries and a reduced quality of life. In this paper, we propose "BlockTheFall," a wearable device-based fall detection framework which detects falls in real time by using sensor data from wearable devices. To accurately identify patterns and detect falls, the collected sensor data is analyzed using machine learning algorithms. To ensure data integrity and security, the framework stores and verifies fall event data using blockchain technology. The proposed framework aims to provide an efficient and dependable solution for fall detection with improved emergency response, and elderly individuals' overall well-being. Further experiments and evaluations are being carried out to validate the effectiveness and feasibility of the proposed framework, which has shown promising results in distinguishing genuine falls from simulated falls. By providing timely and accurate fall detection and response, this framework has the potential to substantially boost the quality of elderly care.
Abstract:Skin cancer detection is challenging since different types of skin lesions share high similarities. This paper proposes a computer-based deep learning approach that will accurately identify different kinds of skin lesions. Deep learning approaches can detect skin cancer very accurately since the models learn each pixel of an image. Sometimes humans can get confused by the similarities of the skin lesions, which we can minimize by involving the machine. However, not all deep learning approaches can give better predictions. Some deep learning models have limitations, leading the model to a false-positive result. We have introduced several deep learning models to classify skin lesions to distinguish skin cancer from different types of skin lesions. Before classifying the skin lesions, data preprocessing and data augmentation methods are used. Finally, a Convolutional Neural Network (CNN) model and six transfer learning models such as Resnet-50, VGG-16, Densenet, Mobilenet, Inceptionv3, and Xception are applied to the publically available benchmark HAM10000 dataset to classify seven classes of skin lesions and to conduct a comparative analysis. The models will detect skin cancer by differentiating the cancerous cell from the non-cancerous ones. The models performance is measured using performance metrics such as precision, recall, f1 score, and accuracy. We receive accuracy of 90, 88, 88, 87, 82, and 77 percent for inceptionv3, Xception, Densenet, Mobilenet, Resnet, CNN, and VGG16, respectively. Furthermore, we develop five different stacking models such as inceptionv3-inceptionv3, Densenet-mobilenet, inceptionv3-Xception, Resnet50-Vgg16, and stack-six for classifying the skin lesions and found that the stacking models perform poorly. We achieve the highest accuracy of 78 percent among all the stacking models.