Abstract:Understanding the heat use of customers is crucial for effective district heating (DH) operations and management. Unfortunately, existing knowledge about customers and their heat load behaviors is quite scarce and very few studies have been focusing on this aspect. The deployment of smart meters offers a unique opportunity for researchers and DH utilities to analyze large-scale data and discover both typical, as well as atypical, patterns in the network. Heat load pattern discovery is a challenging task in DH systems, since a comprehensive analysis needs to involve many customers. Most of the past studies have relied on analysis of a small number of buildings, which are not shown to be picked as the representative examples. Therefore, the knowledge discovered in such studies is not enough to generalize for the entire network. In this work, we propose a data-driven approach that enables automatic discovery of heat load patterns in a complete district heating network. Our method clusters the buildings into different groups based on the characteristics of their load profiles, extracts the representative patterns for each of them, and detects abnormal profiles, i.e., the ones deviating from the expected behavior. We present the first comprehensive analysis of the heat load patterns by conducting a case study on all the buildings, in six customer categories, connected to two district heating networks in the south of Sweden. Our method has captured fifteen typical patterns among the heat load profiles of all buildings in our dataset. It shows that control strategies are not enough to explain the variability in the heat load behaviors. In conclusion, we demonstrate that the proposed approach has a great potential to develop knowledge about customers and their heat use habits in practice by automatically analyzing their typical and atypical profiles in large-scale.